1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
|
.. index::
single: Program; SLAPAF
single: SLAPAF
.. _UG\:sec\:slapaf:
:program:`SlapAf`
=================
.. only:: html
.. contents::
:local:
:backlinks: none
.. xmldoc:: <MODULE NAME="SLAPAF">
%%Description:
<HELP>
This program is a general purpose facility for geometry
optimization. At present, it is tailored to use analytical
or numerical gradients produced by ALASKA.
SLAPAF also computes an approximate Hessian.
</HELP>
Provided with the first order derivative with respect to nuclear displacements
the program is capable to optimize molecular structures with or
without constraints for minima or
transition states. This will be achieved with a quasi-Newton approach
in combination with 2nd ranks updates of the approximate Hessian or
with the use of a computed (analytic or numerical) Hessian.
Note that *if* a computed Hessian is available on the
:file:`RUNFILE` then it will be used rather than the approximate Hessian generated by :program:`Slapaf`.
On completion of an optimization :program:`SlapAf` will automatically execute a single energy evaluation,
this can be disabled with the :kword:`NOLAst` keyword.
.. _UG\:sec\:slapaf_description:
Description
-----------
:program:`SlapAf` has three different ways in selecting the
basis for the displacements during the optimization.
The first format require user input (not recommended), whereas the two other options are totally black-boxed.
The formats are:
#. the old format as in |molcasiii|, which is user specified.
The internal coordinates
are here represented as linear combination of internal coordinates
(such as bonds, angles, torsions, out of plane angles, Cartesian coordinates
and separation of centers of mass) and the linear combinations are totally defined
by user input.
This format does also require the user to specify the
Hessian (default a diagonal matrix).
This option *allows* for frozen internal coordinates.
#. the second format is an automatic
option which employs the Cartesian eigenvectors of the approximative Hessian (generated by the
Hessian model functional :cite:`HMF`).
#. the third format (this is the recommend and default) is an automatic option which utilizes linear combinations
of some curvilinear coordinates (stretches, bends, and torsions).
This implementation
has two variations. The first can be viewed as the conventional use of
non-redundant internal coordinates :cite:`nric1,nric2,nric3`.
The second variation is a force constant weighted (FCW)
redundant space (the HWRS option) version of the former
implementation :cite:`Lindh:97`.
All three formats of internal coordinates can be used in combinations with
constraints on the molecular parameters or other type of constraints as for
example energy differences.
The displacements are symmetry adapted
and any rotation and translation if present is deleted.
The relaxation is symmetry preserving.
.. _UG\:sec\:slapaf_dependencies:
Dependencies
------------
:program:`SlapAf` depends on the results of :program:`ALASKA` and also possibly
on :program:`MCKINLEY` and :program:`MCLR`.
.. _UG\:sec\:slapaf_files:
Files
-----
Input files
...........
Apart from the standard input file :program:`SlapAf` will use the following input
files.
.. class:: filelist
:file:`RUNFILE`
File for communication of auxiliary information. If a computed Hessian is available on this file it will be used rather than
the approximate Hessian generated by :program:`Slapaf`.
:file:`RUNFILE2`
File for communication of auxiliary information of the "ground state" in case of minimum energy cross point optimizations.
:file:`RUNOLD`
File for communication of auxiliary information for reading an old Hessian matrix from a previous geometry optimization.
Output files
............
In addition to the standard output file :program:`SlapAf` will use the following output
files.
.. class:: filelist
:file:`RUNFILE`
File for communication of auxiliary information.
:file:`RUNFILE2`
File for communication of auxiliary information of the "ground state" in case of minimum energy cross point optimizations.
:file:`MD_GEO`
Molden input file for geometry optimization analysis.
:file:`MD_MEP`
Molden input file for minimum energy path (MEP).
:file:`MD_SADDLE`
Molden input file for energy path (MEP) of a Saddle TS optimization.
:file:`MD_IRC`
Molden input file for intrinsic reaction coordinate analysis of a TS.
:file:`MD_FREQ`
Molden input file for harmonic frequency analysis.
:file:`UNSYM`
ASCII file where all essential information, like geometry, Hessian normal modes and dipole
derivatives are stored.
:file:`STRUCTURE`
Output file with a statistics of geometry optimization convergence.
.. _UG\:sec\:slapaf_input:
Input
-----
:program:`SlapAf` will as standard
provided with an energy and a corresponding gradient
update the geometry (optimize).
Possible update methods include different quasi-Newton methods.
The program will also provide for updates of the Hessian.
The program has a number of different variable metric methods available for
the Hessian update.
This section describes the input to the :program:`SlapAf` program.
This section describes the input to the
:program:`SLAPAF` program in the |molcas| program system. The input starts
with the program name ::
&SLAPAF
There are no compulsory keywords
Optional convergence control keywords
.. class:: keywordlist
:kword:`ITERations`
Maximum number of iterations which
will be allowed in the relaxation procedure. Default is 500
iterations, however, if environment variable :variable:`MOLCAS_MAXITER` has been exported by the user
this is the assumed default value.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="ITERATIONS" APPEAR="Max iterations" KIND="INT" MIN_VALUE="0" DEFAULT_VALUE="500" LEVEL="BASIC">
%%Keyword: Iterations <basic>
<HELP>
Specify the max number of iterations which
will be allowed in the relaxation procedure. Default is 500
iterations however, if MOLCAS_MAXITER has been exported by the user
this is the assumed default value.
</HELP>
</KEYWORD>
:kword:`THRShld`
Enter two real numbers which specifies the convergence criterion with respect to the
energy change and the norm of the gradient. The defaults are
0.0 and 3.0D-4 au for Gaussian convergence criteria
(which normally do not consider the energy change), and
1.0D-6 and 3.0D-4 for Baker criteria (see the :kword:`BAKER` keyword).
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="THRSHLD" APPEAR="Convergence threshold" KIND="REALS" SIZE="2" MIN_VALUE="0.0" DEFAULT_VALUES="0.0,3.0D-4" LEVEL="ADVANCED">
%%Keyword: Thrshld <advanced>
<HELP>
Enter two real numbers
which specifies the convergence criterion with respect to the
energy change and the norm of the gradient.
</HELP>
The defaults are 0.0 and 3.0D-4 for Gaussian, and 1.0D-6 and 3.0D-4 for Baker.
</KEYWORD>
:kword:`BAKEr`
Activate convergence criteria according to Baker :cite:`Baker`.
Default is to use the convergence criteria as in the Gaussian
program :cite:`GAUSSIAN94`.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="BAKER" APPEAR="Baker style convergence criteria" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword: Baker <advanced>
<HELP>
Activate convergence criteria according to Baker.
Default is to use the convergence criteria as in the Gaussian
program.
</HELP>
</KEYWORD>
:kword:`MAXStep`
This keyword is followed by the value which defines the seed of largest
change of the internal coordinates which will be accepted. A
change which is larger is reduced to the max value. The value is dynamically modified each iterations.
The default value is 0.3 au or rad.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="MAXSTEP" APPEAR="Max step" KIND="REAL" MIN_VALUE="0.0" DEFAULT_VALUE="0.3" LEVEL="BASIC">
%%Keyword: Maxstep <basic>
<HELP>
Enter the value which defines the seed of largest
change of the internal coordinates which will be accepted. A
change which is larger is reduced to the max value. The value is dynamically modified each iterations.
</HELP>
The default
value is 0.3 au or rad.
</KEYWORD>
:kword:`CNWEight`
Sets the maximum weight assigned to the fulfillment of the constraints, relative to the step taken in the
complementary space for energy minimization. The step in the constraint space is truncated to be at most as
large as the step in the minimization space, or half the maximum total step, whichever is larger, multiplied
by this value. Default is 1.0.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="CNWEIGHT" APPEAR="Max constraint weight" KIND="REAL" MIN_VALUE="0.0" DEFAULT_VALUE="1.0" LEVEL="BASIC">
%%Keyword: CnWeight <basic>
<HELP>
Sets the maximum weight assigned to the fulfillment of
the constraints, relative to the step taken in the
complementary space for energy minimization.
</HELP>
</KEYWORD>
:kword:`TOLErance`
Controls how strictly the constraints (if any) must be satisfied at convergence. The default value
is very large, such that this criterion is always met, and only the gradient and maximum step (or
energy difference) control convergence. If you set this keyword to some value, a constrained optimization
will only converge if the maximum error in any constraint is lower than this number (in atomic units,
and radians).
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="TOLE" APPEAR="Constraint tolerance" KIND="REAL" MIN_VALUE="0.0" DEFAULT_VALUE="1.0D10" LEVEL="BASIC">
%%Keyword: Tolerance <basic>
<HELP>
Controls how strictly the constraints must be satisfied at convergence.
</HELP>
</KEYWORD>
Optional coordinate selection keywords
.. class:: keywordlist
:kword:`CARTesian`
Activate :program:`SlapAf` to use the eigenvectors
of the approximative Hessian expressed in Cartesian as the
definition of the internal coordinates. The default is to
use the FCW non-redundant internal coordinates.
The Hessian will be modeled by the Hessian Model Functional.
.. xmldoc:: <GROUP MODULE="SLAPAF" KIND="BOX" NAME="IC" APPEAR="Internal coordinate selection" LEVEL="ADVANCED">
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="CARTESIAN" APPEAR="Cartesian internal coordinates" KIND="SINGLE" EXCLUSIVE="HWRS,NOHWRS,INTERNAL" LEVEL="ADVANCED">
%%Keyword: Cartesian <advanced>
<HELP>
Activate SlapAf to use the eigenvectors
of the approximative Hessian expressed in Cartesian as the
definition of the internal coordinates. The default is to
use the FCW non-redundant internal coordinates.
The Hessian will be modeled by the Hessian Model Functional.
</HELP>
</KEYWORD>
:kword:`INTErnal`
This marks the start of the definition of the internal
coordinates. This section is always ended by the keyword
:kword:`End of Internal`.
For a complete description of this
keyword see
:numref:`UG:sec:definition_of_internal_coordinates`.
This option will also use a diagonal matrix as default for
the Hessian matrix.
The default is to
use the FCW non-redundant internal coordinates.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="INTERNAL" APPEAR="User-defined internal coordinates" KIND="CUSTOM" EXCLUSIVE="HWRS,NOHWRS,CARTESIAN" LEVEL="ADVANCED">
%%Keyword: Internal <advanced>
<HELP>
This marks the start of the definition of the internal
coordinates.
</HELP>
This section is always ended by the keyword "End of Internal".
Consult the manual for details.
</KEYWORD>
:kword:`HWRS`
Use the force constant weighted (FCW) redundant space version of the
nonredundant internal coordinates. This is the default.
The Hessian will be modeled by the Hessian Model Functional.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="HWRS" APPEAR="FWC internal coordinates" KIND="SINGLE" EXCLUSIVE="NOHWRS,CARTESIAN,INTERNAL" LEVEL="ADVANCED">
%%Keyword: HWRS <basic>
<HELP>
Use the force constant weighted (FCW) redundant space version of the
nonredundant internal coordinates.
The Hessian will be modeled by the Hessian Model Functional.
This is the default.
</HELP>
</KEYWORD>
:kword:`NOHWrs`
Disable the use of the force constant weighted redundant space version of the
nonredundant internal coordinates. The default is to use the HWRS option.
The Hessian will be modeled by the Hessian Model Functional.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="NOHWRS" APPEAR="Integral coordinates" KIND="SINGLE" EXCLUSIVE="HWRS,CARTESIAN,INTERNAL" LEVEL="ADVANCED">
%%Keyword: NoHWRS <basic>
<HELP>
Disable the use of the force constant weighted redundant space version of the
nonredundant internal coordinates. The default is to use the HWRS option.
The Hessian will be modeled by the Hessian Model Functional.
</HELP>
</KEYWORD>
:kword:`FUZZ`
When automatically generating the primitive internal coordinates, the system may
end up in disconnected fragments, in which case additional bonds are defined
between the fragments.
This keyword controls how many inter-fragment bonds are added. Bonds are generated
between the closest atoms of two fragments, and all pairs of atoms in separate
fragments at a distance up to the specified value longer.
The value can be followed with the unit BOHR or ANGSTROM. The default is 0.5 a.u.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="FUZZ" APPEAR="Fuzz" KIND="REAL" MIN_VALUE="0.001" DEFAULT_VALUE="0.5" LEVEL="ADVANCED">
%%Keyword: Fuzz <advanced>
<HELP>
When automatically generating the primitive internal coordinates, the system may
end up in disconnected fragments, in which case additional bonds are defined
between the fragments.
This keyword controls how many inter-fragment bonds are added. Bonds are generated
between the closest atoms of two fragments, and all pairs of atoms in separate
fragments at a distance up to the specified value longer.
The value can be followed with the unit BOHR or ANGSTROM. The default is 0.5 a.u.
</HELP>
</KEYWORD>
.. xmldoc:: </GROUP>
Optional Hessian update keywords
.. class:: keywordlist
:kword:`HUPDate`
Method used for updating the Hessian matrix. It must be one of:
* ``None`` --- No update is applied.
* ``BFGS`` --- Activate update according to Broyden--Fletcher--Goldfarb--Shanno.
This is the default.
* ``MSP`` --- Activate the Murtagh--Sargent--Powell update according to Bofill :cite:`MSP`.
This update is preferred for the location of transition states.
* ``EU`` --- Activate the EU update according to Bofill :cite:`EU`.
This update can be used for the location of transition states.
* ``TS-BFGS`` --- Activate the TS-BFGS update according to Bofill :cite:`EU`.
This update can be used for the location of minima or transition states.
.. xmldoc:: <GROUP MODULE="SLAPAF" KIND="BOX" NAME="HU" APPEAR="Hessian update options" LEVEL="ADVANCED">
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="HUPDATE" APPEAR="Hessian update method" KIND="CHOICE" LIST="None,BFGS,MSP,EU,TS-BFGS" LEVEL="ADVANCED" DEFAULT_VALUE="BFGS">
%%Keyword: HUpdate <advanced>
<HELP>
Method used for updating the Hessian matrix.
</HELP>
It must be one of: None, BFGS, MSP, EU, TS-BFGS.
</KEYWORD>
:kword:`UORDer`
Order the gradients and displacements vectors according to Schlegel prior to
the update of the Hessian. Default is no reorder.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="UORDER" APPEAR="Ordered update" KIND="SINGLE" EXCLUSIVE="NOUPDATE" LEVEL="ADVANCED">
%%Keyword: UORDer <basic>
<HELP>
Order the gradients and displacements vectors according to Schlegel prior to
the update of the Hessian. Default is no reorder.
</HELP>
</KEYWORD>
:kword:`WINDow`
Maximum number of previous iterations to include in the Hessian update.
When using RVO (see :kword:`KRIGing` keyword), the maximum number of sample points used is twice this value.
Default is 5.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="WINDOW" APPEAR="Update window" KIND="INT" EXCLUSIVE="NOUPDATE" DEFAULT_VALUE="5" LEVEL="ADVANCED">
%%Keyword: WINDow <basic>
<HELP>
Maximum number of previous iterations to include in the Hessian update.
</HELP>
Default is 5.
</KEYWORD>
.. xmldoc:: </GROUP>
Optional optimization procedure keywords
.. class:: keywordlist
:kword:`NOLIne`
Disable line search. Default is to use line search for minima.
.. xmldoc:: <GROUP MODULE="SLAPAF" KIND="BOX" NAME="OP" APPEAR="Optimization options" LEVEL="BASIC">
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="NOLINE" APPEAR="Deactivate line-search" KIND="SINGLE" LEVEL="BASIC">
%%Keyword: Noline <basic>
<HELP>
Disable line search. Default is to use line search for minima.
</HELP>
</KEYWORD>
:kword:`RATIonal`
Activate geometry optimization using the restricted step Rational Functional optimization :cite:`rf,rs-rf`,
this is the default.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="RATIONAL" APPEAR="RFO option" KIND="SINGLE" EXCLUSIVE="C1-DIIS,C2-DIIS,NEWTON" LEVEL="BASIC">
%%Keyword: Rational <basic>
<HELP>
Activate geometry optimization using the restricted step Rational Functional optimization,
this is the default.
</HELP>
</KEYWORD>
:kword:`C1-Diis`
Activate geometry optimization using the C1-GDIIS method :cite:`gdiis,diis1,diis2`.
The default is to use the Rational Functional approach.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="C1-DIIS" APPEAR="C1-DIIS option" KIND="SINGLE" EXCLUSIVE="RATIONAL,C2-DIIS,NEWTON" LEVEL="BASIC">
%%Keyword: C1-diis <advanced>
<HELP>
Activate geometry optimization using the C1-GDIIS method.
The default is to use the Rational Functional approach.
</HELP>
</KEYWORD>
:kword:`C2-Diis`
Activate geometry optimization using the C2-GDIIS method :cite:`c2-diis`.
The default is to use the Rational Functional approach.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="C2-DIIS" APPEAR="C2-DIIS option" KIND="SINGLE" EXCLUSIVE="RATIONAL,C1-DIIS,NEWTON" LEVEL="BASIC">
%%Keyword: C2-diis <basic>
<HELP>
Activate geometry optimization using the C2-GDIIS method.
The default is to use the Rational Functional approach.
</HELP>
</KEYWORD>
:kword:`DXDX`
This option is associated to the use of the C1- and C2-GDIIS
procedures. This option will activate the computation of the
so-called error matrix elements as :math:`e=\delta x^{\text{T}}\delta x`,
where :math:`\delta x` is the displacement vector.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="DXDX" APPEAR="dxdx DIIS option" KIND="SINGLE" REQUIRE="C1-DIIS.OR.C2-DIIS" EXCLUSIVE="DXG,GDX,GG" LEVEL="ADVANCED">
%%Keyword: dxdx <basic>
<HELP>
This option is associated to the use of the C1- and C2-GDIIS
procedures. This option will activate the computation of the
so-called error matrix elements as e=dx(T)dx,
where dx is the displacement vector.
</HELP>
</KEYWORD>
:kword:`DXG`
This option is associated to the use of the C1- and C2-GDIIS
procedures. This option will activate the computation of the
so-called error matrix elements as :math:`e=\delta x^{\text{T}}g`,
where :math:`\delta x` is the displacement vector and :math:`g` is the
gradient vector.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="DXG" APPEAR="dxg DIIS option" KIND="SINGLE" REQUIRE="C1-DIIS.OR.C2-DIIS" EXCLUSIVE="DXDX,GDX,GG" LEVEL="ADVANCED">
%%Keyword: dxg <basic>
<HELP>
This option is associated to the use of the C1- and C2-GDIIS
procedures. This option will activate the computation of the
so-called error matrix elements as e=dx(T)g,
where dx is the displacement vector and g is the
gradient vector.
</HELP>
</KEYWORD>
:kword:`GDX`
See above.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="GDX" APPEAR="gdx DIIS option" KIND="SINGLE" REQUIRE="C1-DIIS.OR.C2-DIIS" EXCLUSIVE="DXDX,DXG,GG" LEVEL="ADVANCED">
%%Keyword: gdx <basic>
<HELP>
See the dxg keyword.
</HELP>
</KEYWORD>
:kword:`GG`
This option is associated to the use of the C1- and C2-GDIIS
procedures. This option will activate the computation of the
so-called error matrix elements as :math:`e=g^{\text{T}}g`,
where :math:`g` is the gradient vector. This is the default.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="GG" APPEAR="gg DIIS option" KIND="SINGLE" REQUIRE="C1-DIIS.OR.C2-DIIS" EXCLUSIVE="DXDX,DXG,GDX" LEVEL="ADVANCED">
%%Keyword: gg <basic>
<HELP>
This option is associated to the use of the C1- and C2-GDIIS
procedures. This option will activate the computation of the
so-called error matrix elements as e=g(T)g,
where g is the gradient vector. This is the default.
</HELP>
</KEYWORD>
:kword:`NEWTon`
Activate geometry optimization using the standard quasi-Newton approach.
The default is to use the Rational Functional approach.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="NEWTON" APPEAR="Newton-Raphson optimization" KIND="SINGLE" EXCLUSIVE="RATIONAL,C1-DIIS,C2-DIIS" LEVEL="BASIC">
%%Keyword: Newton <basic>
<HELP>
Activate geometry optimization using the standard quasi-Newton approach.
The default is to use the Rational Functional approach.
</HELP>
</KEYWORD>
:kword:`RS-P-rfo`
Activate RS-P-RFO :cite:`rs-rf` as default for TS-search. Default is RS-I-RFO.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="RS-P-RFO" APPEAR="RS-P-RFO option" KIND="SINGLE" REQUIRE="TS.OR.FINDTS" LEVEL="BASIC">
%%Keyword: RS-P-RFO <basic>
<HELP>
Activate RS-P-RFO as default for TS-search. Default is RS-I-RFO.
</HELP>
</KEYWORD>
:kword:`TS`
Keyword for optimization of transition states. This flag will activate
the use of the mode following rational functional approach :cite:`mfrf`.
The mode to follow can either be the one with the lowest eigenvalue (if positive
it will be changed to a negative value) or by the eigenvector which index
is specified by the :kword:`MODE` keyword (see below). The keyword will also
activate the Murtagh--Sargent--Powell update of the Hessian and inactivate
line search. This keyword will also enforce that the Hessian has the
right index (i.e. one negative eigenvalue).
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="TS" APPEAR="Brute force TS optimization" KIND="SINGLE" EXCLUSIVE="C1-DIIS,C2-DIIS,NEWTON,NOUPDATE,MEYER,BPUPDATE,BFGS" LEVEL="BASIC">
%%Keyword: TS <basic>
<HELP>
Keyword for optimization of transition states. This flag will activate
the use of the mode following rational functional approach.
The mode to follow can either be the one with the lowest eigenvalue (if positive
it will be changed to a negative value) or by the eigenvector which index
is specified by the MODE keyword. The keyword will also
activate the Murtagh-Sargent-Powell update of the Hessian and inactivate
line search. This keyword will also enforce that the Hessian has the
right index (i.e. one negative eigenvalue).
</HELP>
</KEYWORD>
:kword:`MODE`
Specification of the Hessian eigenvector index, this mode will be followed
by the mode following RF method for optimization of transition states.
The keyword card is followed by a single card specifying the eigenvector index.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="MODE" APPEAR="Mode specification" KIND="INT" REQUIRE="TS" LEVEL="BASIC">
%%Keyword: Mode <advanced>
<HELP>
Specification of the Hessian eigenvector index, this mode will be followed
by the mode following RF method for optimization of transition states.
The keyword card is followed by a single card specifying the eigenvector index.
</HELP>
</KEYWORD>
:kword:`FINDTS`
Enable a constrained optimization to release the constraints and locate
a transition state if negative curvature is encountered and the
gradient norm is below a specific threshold (see the :kword:`GNRM` option).
Keyword :kword:`TSCOnstraints` should be used in combination with :kword:`FINDTS`.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="FINDTS" APPEAR="Find TS algorithm" KIND="SINGLE" EXCLUSIVE="TS" LEVEL="BASIC">
%%Keyword: FindTS <basic>
<HELP>
Enable a constrained optimization to release the constraints and locate
a transition state if negative curvature is encountered and the
gradient norm is below a specific threshold (see the GNRM option).
Keyword TSCOnstraints should be used in combination with FINDTS.
</HELP>
</KEYWORD>
:kword:`TSCOnstraints`
Specify constraints that will be active during the initial stage of an
optimization with :kword:`FINDTS`. When negative curvature and low
gradient are encountered, these constraints will be released and
other constraints will remain active. If this block is not given in
the input, all constraints will be released. The syntax of this
keyword is exactly like normal constraints, and it must be ended with
:kword:`End of TSConstraints`
(see :numref:`UG:sec:definition_of_internal_coordinates` below).
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="TSCONSTRAINTS" APPEAR="TS constraints" KIND="CUSTOM" REQUIRE="FINDTS" LEVEL="BASIC">
%%Keyword: TSConstraints <basic>
<HELP>
Specify constraints that will be active during the initial stage of an
optimization with FINDTS. When a transition state region is reached
these constraints will be released. If this keyword is not used,
all constraints will be released.
</HELP>
</KEYWORD>
:kword:`GNRM`
Modify the gradient norm threshold associated with the :kword:`FINDTS` option.
The actual threshold is specified on the subsequent line. The default
value is 0.2.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="GNRM" APPEAR="Gradient norm threshold" KIND="REAL" MIN_VALUE="0.0" DEFAULT_VALUE="0.2" REQUIRE="FINDTS" LEVEL="ADVANCED">
%%Keyword: GNRM <basic>
<HELP>
Modify the gradient norm threshold associated with the FINDTS option.
The actual threshold is specified on the subsequent line. The default
value is 0.2.
</HELP>
</KEYWORD>
.. xmldoc:: </GROUP>
:kword:`MEP-search` or :kword:`MEP`
Enable a minimum energy path (MEP) search.
.. xmldoc:: <GROUP MODULE="SLAPAF" KIND="BOX" NAME="ADVANCED" APPEAR="Advanced PES exploration options" LEVEL="BASIC">
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="MEP-SEARCH" APPEAR="MEP-search" KIND="SINGLE" LEVEL="BASIC" ALSO="MEP">
%%Keyword: MEP-search <basic>
<HELP>
Enable a minimum energy path (MEP) search.
</HELP>
MEP is a valid synonym.
</KEYWORD>
.. xmldoc:: %%Keyword: MEP <basic>
Enable a minimum energy path (MEP) search.
Synonym of MEP-search.
:kword:`rMEP-search`
Enable a reverse minimum energy path (MEP) search.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="RMEP-SEARCH" APPEAR="Reverse MEP-search" KIND="SINGLE" LEVEL="BASIC">
%%Keyword: RMEP-search <basic>
<HELP>
Enable a reverse minimum energy path (MEP) search.
</HELP>
</KEYWORD>
:kword:`IRC`
The keyword is used to perform an intrinsic reaction coordinate (IRC) analysis of a
transition state structure. The analysis will follow the reaction path forward and
backward until the energy increases. The keyword requires that the starting structure be
that of a transition state and that the reaction vector be specified explicitly
(check the keyword :kword:`REACtion vector`) or implicitly if it can be found on :file:`RUNOLD`.
Note that the user should not specify any explicit constraints!
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="IRC" APPEAR="IRC analysis" KIND="SINGLE" LEVEL="BASIC">
%%Keyword: IRC <basic>
<HELP>
The keyword is used to perform an intrinsic reaction coordinate (IRC) analysis of a
transition state structure. The analysis will follow the reaction path forward and
backward until the energy increase. The keyword require that the starting structure is
that of a transition state and that the reaction vector is specified explicitly
(check the keyword "REACtion vector") or implicitly can be found on RUNOLD.
Note that the user should not specify any explicit constraints!
</HELP>
</KEYWORD>
:kword:`NMEP` or :kword:`NIRC`
Maximum number of points to find in a minimum energy path search or intrinsic reaction coordinate analysis.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="NMEP" APPEAR="Max points on a MEP" KIND="INT" MIN_VALUE="1" REQUIRE="MEP-SEARCH.OR.RMEP-SEARCH.OR.IRC" LEVEL="BASIC" ALSO="NIRC">
%%Keyword: NMEP <basic>
<HELP>
Maximum number of points to find in a minimum energy path search or intrinsic reaction coordinate analysis.
</HELP>
NIRC is a valid synonym.
</KEYWORD>
%%Keyword: NIRC <basic>
Maximum number of points to find in an intrinsic reaction coordinate analysis or minimum energy path search.
Synonym of NMEP.
:kword:`MEPStep` or :kword:`IRCStep`
The keyword is used to specify the step length done in the MEP search or IRC analysis.
The step length can be followed with the unit BOHR or ANGSTROM. The default is 0.1 a.u.
(in normalized mass-weighted coordinates).
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="MEPSTEP" APPEAR="MEP Step" KIND="STRING" REQUIRE="MEP-SEARCH.OR.RMEP-SEARCH.OR.IRC" LEVEL="BASIC" ALSO="IRCSTEP">
%%Keyword: MEPStep <basic>
<HELP>
The keyword is used to specify the step length done in the MEP search or IRC analysis.
The step length can be followed with the unit BOHR or ANGSTROM. The default is 0.1 a.u.
(in normalized mass-weighted coordinates).
</HELP>
IRCStep is a valid synonym.
</KEYWORD>
%%Keyword: IRCStep <basic>
The keyword is used to specify the step length done in the IRC analysis or MEP search.
The step length can be followed with the unit BOHR or ANGSTROM. The default is 0.1 a.u.
(in normalized mass-weighted coordinates).
Synonym of MEPStep.
:kword:`MEPType` or :kword:`IRCType`
Specifies what kind of constraint will be used for optimizing the points during the MEP search or IRC analysis.
The possibilities are SPHERE, the default, which uses the Sphere constraint (each structure is at a given distance in coordinate space from the reference),
or PLANE which uses the Transverse constraint (each structure is at a given distance from the hyperplane defined by the reference and the path direction).
The reference structure changes at each step, according to the :kword:`MEPAlgorithm` keyword.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="MEPTYPE" APPEAR="MEP Type" KIND="STRING" REQUIRE="MEP-SEARCH.OR.RMEP-SEARCH.OR.IRC" LEVEL="ADVANCED" ALSO="IRCTYPE">
%%Keyword: MEPType <advanced>
<HELP>
Specifies what kind of constraint will be used for optimizing the points during the MEP search or IRC analysis.
The possibilities are SPHERE, the default, which uses the Sphere constraint (each structure is at a given distance in coordinate space from the reference),
or PLANE which uses the Transverse constraint (each structure is at a given distance from the hyperplane defined by the reference and the path direction).
The reference structure changes at each step, according to the MEPAlgorithm keyword.
</HELP>
IRCType is a valid synonym.
</KEYWORD>
%%Keyword: IRCType <advanced>
Specifies what kind of constraint will be used for optimizing the points during the IRC analysis or MEP search.
The possibilities are SPHERE, the default, which uses the Sphere constraint (each structure is at a given distance in coordinate space from the reference),
or PLANE which uses the Transverse constraint (each structure is at a given distance from the hyperplane defined by the reference and the path direction).
The reference structure changes at each step, according to the IRCAlgorithm keyword.
Synonym of MEPType.
:kword:`MEPAlgorithm` or :kword:`IRCAlgorithm`
Selects the algorithm for a MEP search or IRC analysis.
The possibilities are GS for the González--Schlegel algorithm, the default, or MB for the Müller--Brown algorithm.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="MEPALGORITHM" APPEAR="MEP Algorithm" KIND="STRING" REQUIRE="MEP-SEARCH.OR.RMEP-SEARCH.OR.IRC" LEVEL="ADVANCED" ALSO="IRCALGORITHM">
%%Keyword: MEPAlgorithm <advanced>
<HELP>
Selects the algorithm for a MEP search or IRC analysis.
The possibilities are GS for the Gonzalez-Schlegel algorithm, the default, or MB for the Mueller-Brown algorithm.
</HELP>
IRCAlgorithm is a valid synonym.
</KEYWORD>
%%Keyword: IRCAlgorithm <advanced>
Selects the algorithm for a MEP search or IRC analysis.
The possibilities are GS for the Gonzalez-Schlegel algorithm, the default, or MB for the Mueller-Brown algorithm.
Synonym of MEPAlgorithm.
:kword:`MEPConvergence` or :kword:`IRCConvergence`
Sets the gradient convergence for a MEP search or IRC analysis.
The path will be terminated when the gradient norm at an optimized point is below this threshold.
By default it is the same as the gradient threshold for the normal iterations, specified with :kword:`THRShld`,
it may be necessary to reduce it to follow a path on a very flat surface.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="MEPCONVERGENCE" APPEAR="MEP gradient convergence" KIND="REAL" REQUIRE="MEP-SEARCH.OR.RMEP-SEARCH.OR.IRC" LEVEL="ADVANCED" ALSO="IRCCONVERGENCE">
%%Keyword: MEPConvergence <advanced>
<HELP>
Sets the gradient convergence for a MEP search or IRC analysis.
The path will be terminated when the gradient norm at an optimized point is below this threshold.
By default it is the same as the gradient threshold for the normal iterations, specified with THRShld,
it may be necessary to reduce it to follow a path on a very flat surface.
</HELP>
IRCConvergence is a valid synonym.
</KEYWORD>
%%Keyword: IRCConvergence <advanced>
Sets the gradient convergence for a MEP search or IRC analysis.
The path will be terminated when the gradient norm at an optimized point is below this threshold.
By default it is the same as the gradient threshold for the normal iterations, specified with THRShld,
Synonym of MEPConvergence.
:kword:`REFErence`
The keyword is followed by a list of the symmetry unique coordinates (in au)
of the origin of the hyper sphere. The default origin is the structure
of the first iteration.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="REFERENCE" APPEAR="MEP reference structure" KIND="REALS_LOOKUP" SIZE="DEG_FREEDOM" LEVEL="BASIC">
%%Keyword: REFErence <basic>
<HELP>
The keyword is followed by a list of the symmetry unique coordinates (in au)
of the origin of the hyper sphere. The default origin is the structure
of the first iteration.
</HELP>
</KEYWORD>
:kword:`GRADient of reference`
The keyword is followed by a list of the gradient vector components. This keyword is
compulsory when using the Transverse kind of constraint. The optimization is performed in
a space orthogonal to the given vector.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="GRAD" APPEAR="Gradient of reference" KIND="REALS_LOOKUP" SIZE="DEG_FREEDOM" LEVEL="BASIC">
%%Keyword: GRADient of reference <basic>
<HELP>
The keyword is followed by a list of the gradient vector components. This keyword is
compulsory when using the Transverse kind of constraint. The optimization is performed in
a space orthogonal to the given vector.
</HELP>
</KEYWORD>
:kword:`REACtion vector`
The keyword is followed by the reaction vector specified as the Cartesian vector components
on each of the symmetry unique atoms.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="REAC" APPEAR="Reaction vector" KIND="REALS_LOOKUP" SIZE="DEG_FREEDOM" LEVEL="BASIC">
%%Keyword: REACtion vector <basic>
<HELP>
The keyword is followed by the reaction vector specified as the Cartesian vector components
on each of the symmetry unique atoms.
</HELP>
</KEYWORD>
.. xmldoc:: </GROUP>
Optional force constant keywords
.. class:: keywordlist
:kword:`OLDForce`
The Hessian matrix is read from the file :file:`RUNOLD`.
This Hessian is either
an analytic or approximative Hessian updated by Slapaf.
Note that for this option to work properly the type of
internal coordinates must be the same!
.. xmldoc:: <GROUP MODULE="SLAPAF" KIND="BOX" NAME="FCO" APPEAR="Force constant options" LEVEL="ADVANCED">
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="OLDFORCE" APPEAR="External Hessian in internals" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword: Oldforce <advanced>
<HELP>
The Hessian matrix is read from the file RUNOLD.
This Hessian is either
an analytic or approximative Hessian updated by Slapaf.
Note that for this option to work properly the type of
internal coordinates must be the same!
</HELP>
</KEYWORD>
:kword:`FCONstant`
Input of Hessian in internal coordinates.
There are two different syntaxes.
#. The keyword is followed by an entry with
the number of elements which will be set (observe that the
update will preserve that the elements :math:`H_{ij}` and :math:`H_{ji}` are
equal). The next entries will contain the value and the indices of
the elements to be replaced.
#. The keyword if followed by the label :kword:`Square` or
:kword:`Triangular`. The subsequent line specifies the rank of the
Hessian. This is then followed by entries specifying the Hessian
in square or lower triangular order.
.. xmldoc:: %%Keyword: Fconstant <advanced>
Input of Hessian in internal coordinates.
Note this is
There are two different syntaxes.
1) The keyword is followed by an entry with
the number of elements which will be set (observe that the
update will preserve that the elements Hij and Hji are
equal). The next lines will contain the value and the indices of
the elements to be replaced.
2) The keyword if followed by the label "Square" or
"Triangular". The subsequent entry specifies the rank of the
Hessian. This is then followed by entries specifying the Hessian
in square or lower triangular order.
:kword:`XFCOnstant`
Input of an external Hessian matrix in cartesian coordinates. The
syntax is the same as for the :kword:`FCONSTANT` keyword.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="XFCONSTANT" APPEAR="External Hessian in Cartesians" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword: XFConstant <basic>
<HELP>
Input of an external Hessian matrix in cartesian coordinates. The
syntax is the same as for the FCONSTANT keyword.
</HELP>
</KEYWORD>
:kword:`NUMErical`
This invokes as calculation of the force constant matrix by a
two-point finite difference formula. The resulting force
constant matrix is used for an analysis of the harmonic
frequencies. **Observe** that in case of the use of internal
coordinates defined as Cartesian coordinates that these has to be
linear combinations which are free from translational and
rotational components for the harmonic frequency analysis to be
valid. **Alternative:** see keyword :kword:`RowH` in the section
about Internal coordinates.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="NUMERICAL" APPEAR="Numerical Hessian" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword: Numerical <basic>
<HELP>
This invokes as calculation of the force constant matrix by a
two-point finite difference formula. The resulting force
constant matrix is used for an analysis of the harmonic
frequencies. Observe that in case of the use of internal
coordinates defined as Cartesian coordinates that these has to be
linear combinations which are free from translational and
rotational components for the harmonic frequency analysis to be
valid.
</HELP>
</KEYWORD>
:kword:`CUBIc`
This invokes a calculation of the 2nd and the 3rd order
force constant matrix by finite difference formula.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="CUBIC" APPEAR="Numerical anharmonic force constants" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword: Cubic <basic>
<HELP>
This invokes a calculation of the 2nd and the 3rd order
force constant matrix by finite difference formula.
</HELP>
</KEYWORD>
:kword:`DELTa`
This keyword is followed by a real number which defines the
step length used in the finite differentiation. Default: 1.0D-2.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="DELTA" APPEAR="Numerical displacement value" KIND="REAL" REQUIRE="NUMERICAL.OR.CUBIC" LEVEL="ADVANCED">
%%Keyword: Delta <basic>
<HELP>
This keyword is followed by a real number which defines the
step length used in the finite differentiation. Default: 1.0D-2.
</HELP>
</KEYWORD>
:kword:`PRFC`
The eigenvalues and eigenvectors of the Hessian matrix
are printed. The internal coordinates definitions are also printed.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="PRFC" APPEAR="Print eigen vectors and values of H" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword: PrFC <basic>
<HELP>
The eigenvalues and eigenvectors of the Hessian matrix
are printed. The internal coordinates definitions is also printed.
</HELP>
</KEYWORD>
:kword:`RHIDden`
Define the hidden atoms selection radius in order to improve a QM/MM Hessian. It can be followed by :kword:`angstrom`.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="RHID" APPEAR="Hidden atoms selection radius" KIND="REAL" LEVEL="ADVANCED">
%%Keyword: rHid <advanced>
<HELP>
Define the hidden atoms selection radius in order to improve a QM/MM Hessian.
</HELP>
</KEYWORD>
.. xmldoc:: </GROUP>
Optional miscellaneous keywords
.. class:: keywordlist
:kword:`CTOF`
Coordinates TO Follow defines an internal coordinate whose values
will be printed in the output during the optimization. Both
the original and the new values will be printed.
The keyword must be followed by the definition on the primitive
coordinate.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="CTOF" KIND="STRINGS" SIZE="2" LEVEL="ADVANCED">
%%Keyword: CTOF <advanced>
<HELP>
Coordinates TO Follow defines an internal coordinate whose values
will be printed in the output during the optimization. Both
the original and the new values will be printed.
The keyword must be followed by the definition on the primitive
coordinate.
</HELP>
</KEYWORD>
:kword:`RTRN`
Maximum number of atoms for which bond lengths, angles and dihedral
angles are listed, and
the radius defining the maximum length of a bond follows.
The latter is used as a threshold when printing out
angles and dihedral angles. The length can be followed by
:kword:`bohr` or
:kword:`angstrom` which indicates the unit in which the length
was specified, the default is
:kword:`bohr`.
The default values are 15 and 3.0 au.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="RTRN" KIND="CUSTOM" LEVEL="ADVANCED">
%%Keyword: RTRN <advanced>
<HELP>
Maximum number of atoms for which bond lengths, angles and dihedral
angles are listed, and
the radius defining the maximum length of a bond follows on
the next line. The latter is used as a threshold when printing out
angles and dihedral angles. The length can be followed by
"bohr" or "angstrom" which indicates the unit in which the length
was specified, the default is "bohr".
</HELP>
</KEYWORD>
:kword:`THERmochemistry`
Request frequencies to be computed followed by an user specified thermochemical analysis.
The keyword must be followed by different entries containing the Rotational Symmetry Number,
the Pressure (in atm), and one entry per Temperature (in K)
for which the thermochemistry will be calculated.
The section is ended by the keyword :kword:`End of PT`.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="THERMO" APPEAR="Thermochemical analysis" KIND="CUSTOM" LEVEL="ADVANCED">
%%Keyword: THER <advanced>
<HELP>
Request frequencies to be computed followed by an user specified thermochemical analysis.
The keyword must be followed by different entries containing the Rotational Symmetry Number,
the Pressure (in atm), and one entry per Temperature (in K)
for which the thermochemistry will be calculated.
The section is ended by the keyword "End of PT".
</HELP>
</KEYWORD>
:kword:`DISOtope`
Calculates frequencies modified for double isotopic substitution.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="DISO" APPEAR="Double isotopic substitutions" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword: DISOtope <advanced>
<HELP>
Calculates frequencies modified for double isotopic substitution.
</HELP>
</KEYWORD>
:kword:`TRACk`
Tries to follow electronic states during an optimization, by computing state overlaps with :program:`RASSI`
at each step. Root numbers selected with :kword:`RlxRoot` in :program:`RASSCF` or with the "EDiff" constraint
are only fixed in the first iteration, then the best-matching states are chosen.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="TRACK" APPEAR="Track states" KIND="SINGLE" LEVEL="BASIC">
%%Keyword: Track <basic>
<HELP>
Tries to follow electronic states during an optimization, by computing state overlaps with RASSI.
</HELP>
</KEYWORD>
:kword:`LASTenergy`
Specifies the quantum chemical method requested for the Last_Energy module (e.g., SCF, CASSCF, CASPT2, etc.)
The keyword must be followed by the name of the module. Moreover, the EMIL command COPY needs to be used
in the global input to provide a file named LASTEN, containing the input for the specified module.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="LASTENERGY" APPEAR="Last Energy method" KIND="STRING" LEVEL="ADVANCED">
%%Keyword: LAST <advanced>
<HELP>
Specifies the quantum chemical method requested for the Last_Energy module (e.g., SCF, CASSCF, CASPT2, etc.)
The keyword must be followed by the name of the module. Moreover, the EMIL command COPY needs to be used
in the global input to provide a file named LASTEN, containing the input for the specified module.
</HELP>
</KEYWORD>
:kword:`NOLAst energy`
Disables the call to the :program:`Last_Energy` module when convergence is achieved.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="NOLASTENERGY" APPEAR="No Last Energy" KIND="SINGLE" LEVEL="BASIC">
%%Keyword: NoLastEnergy <basic>
<HELP>
Disables the call to the Last_Energy module when convergence is achieved.
</HELP>
</KEYWORD>
Optional restricted variance optimization (RVO) :cite:`Raggi2020,FdezGalvan2021,FdezGalvan2023` keywords
.. class:: keywordlist
:kword:`KRIGing`
Activate RVO using gradient-enhanced Kriging (GEK) to describe the surrogate model.
The maximum number of sample points (energies and gradients) is twice the value indicated by the :kword:`WINDow` keyword (i.e. 10 by default).
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="KRIGING" APPEAR="Restricted variance optimization" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword: Kriging <advanced>
<HELP>
Activate restricted variance optimization (RVO) using gradient-enhanced Kriging to describe the surrogate model.
</HELP>
</KEYWORD>
:kword:`TFOFfset`
Trend function or baseline offset for the GEK surrogate model.
The surrogate model will tend to the maximum energy among the sample points plus this value (in au).
The default value is 10.0 au.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="TFOFFSET" APPEAR="Trend function offset" KIND="REAL" DEFAULT_VALUE="10.0" REQUIRE="KRIGING" LEVEL="ADVANCED">
%%Keyword: TFOFfset <advanced>
<HELP>
Trend function or baseline offset for the GEK surrogate model.
The surrogate model will tend to the maximum energy among the sample points plus this value.
</HELP>
Default: 10.0 au.
</KEYWORD>
:kword:`MAXDisp`
Maximum energy dispersion allowed during each macro iteration of the RVO procedure.
A real value is read from the input, the maximum dispersion is this value times the maximum Cartesian gradient.
The default value is 0.3 au.
During the constrained phase of an optimization with :kword:`FindTS`, the default is 0.1 au.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="MAXDISP" APPEAR="Maximum dispersion factor" KIND="REAL" MIN_VALUE="0.0" DEFAULT_VALUE="0.3" REQUIRE="KRIGING" LEVEL="ADVANCED">
%%Keyword: MAXDISP <advanced>
<HELP>
Maximum energy dispersion allowed during each macro iteration of the RVO procedure.
A factor, multiplied by the maximum Cartesian Gradient.
</HELP>
Default: 0.3 au.
</KEYWORD>
:kword:`MXMI`
Maximum number of micro iterations in each macro iteration of the RVO procedure.
If you set this to a small value, you may want to set :kword:`NOFAllback` too.
The default value is 50.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="MXMI" APPEAR="Micro iterations" KIND="INT" MIN_VALUE="1" DEFAULT_VALUE="50" REQUIRE="KRIGING" LEVEL="ADVANCED">
%%Keyword: MXMI <advanced>
<HELP>
Maximum number of micro iterations in each macro iteration of the RVO procedure.
</HELP>
Default: 50.
</KEYWORD>
:kword:`NOFAllback`
Disable fallback to conventional optimization if RVO microiterations do not converge.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="NOFALLBACK" APPEAR="No fallback to conventional" KIND="SINGLE" REQUIRE="KRIGING" LEVEL="ADVANCED">
%%Keyword: NOFALLBACK <advanced>
<HELP>
Disable fallback to conventional optimization if RVO microiterations do not converge.
</HELP>
</KEYWORD>
:kword:`NDELta`
Activate partial gradient enhanced Kriging, PGEK. This integer number determines for how many fewer iterations the gradients will
be included in the PGEK procedure.
The default value is 0, that is standard GEK.
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="NDELTA" APPEAR="Samples without gradient" KIND="INT" MIN_VALUE="0" DEFAULT_VALUE="0" REQUIRE="KRIGING" LEVEL="ADVANCED">
%%Keyword: NDELta <advanced>
<HELP>
Activate partial gradient enhanced Kriging, PGEK. This integer number determines for how many fewer iterations the gradients will
be included in the PGEK procedure.
</HELP>
Default: 0.
</KEYWORD>
Example: A complete set of input decks for a CASSCF geometry
optimization. These are the input decks for the optimization
of the enediyne molecule.
.. extractfile:: ug/SLAPAF.input
&GATEWAY
Title= Enediyne
Coord= $MOLCAS/Coord/enediyne.xyz
Basis= ANO-L-VQZP
Group= x z
> DoWhile
&SEWARD
&SCF
ITERATIONS= 30; Occupied= 9 8 2 1; Thresholds= 1.0d-8 1.0d-3 1.5d-3 0.2d-3; IVO
&RASSCF
Symmetry= 1; Spin= 1
NactEl= 12 0 0; Inactive= 7 7 0 0; Ras2= 3 3 3 3
Iterations= 50 50; CiRoot= 1 1; 1; Thrs= 1.0e-08 1.0e-05 1.0e-05
Lumorb
&SLAPAF; Iterations= 20
> EndDo
Example: Thermochemistry for an asymmetric top (Rotational Symmetry Number
= 1), at 1.0 atm and 273.15, 298.15, 398.15 and 498.15 K. ::
&SLAPAF; THERmochemistry= 1; 1.0; 273.15; 298.15; 398.15; 498.15; End of PT
End of input
.. _UG\:sec\:definition_of_internal_coordinates:
Definition of internal coordinates or constraints
.................................................
The input section defining the internal coordinates always start with the
keyword :kword:`Internal coordinates` and the definition of the constraints
starts with the keyword :kword:`Constraints`. Note that the latter
is an input section for the :program:`GATEWAY` module.
The input is always sectioned into two
parts where the first section defines a set of primitive internal
coordinates
and the second part defines the actual internal coordinates as
any arbitrary linear combination of the primitive internal coordinates
that was defined in the first section.
In case of constraints the second part does also assign values to the
constraints.
In the first section we will refer to the atoms by their atom label
(:program:`SEWARD` will make sure that there is no redundancy). In case of
symmetry one will have to augment the atom label with a symmetry operation
in parenthesis in order to specify a symmetry related center.
Note that the user only
have to specify distinct internal coordinates (:program:`ALASKA` will make the
symmetry adaptation).
In the specification below *rLabel* is a user defined label with no more
than 8 (eight) characters. The specifications atom1, atom2, atom3, and atom4
are the unique atom labels as specified in the input to :program:`SEWARD`.
**The primitive internal coordinates** are defined as
.. class:: primlist
*rLabel* = Bond atom1 atom2
a primitive internal coordinate *rLabel* is defined as the bond
between center atom1 and atom2.
*rLabel* = Angle atom1 atom2 atom3
a primitive internal coordinate *rLabel* is defined as the angle
between the bonds formed from connecting atom1 to atom2 and
connecting atom2 to atom3.
*rLabel* = LAngle(1) atom1 atom2 atom3
a primitive internal coordinate *rLabel* is defined as the linear angle
between the bonds formed from connecting atom1 to atom2 and
connecting atom2 to atom3. To define the direction of the angle the following
procedure is followed.
#. --- *the three centers are linear*,
#. form a reference axis, :math:`R_1`, connecting atom1 and atom3,
#. compute the number of zero elements, *nR*, in the reference vector,
#. --- *nR=0*,
a first perpendicular direction to the reference axis is formed by
.. compound::
.. math:: R=(R_{1x},R_{1y},-R_{1z})
followed by the projection
.. math:: R_2=R-\frac{R \cdot R_1}{R_1 \cdot R_1} R_1.
The second perpendicular direction completes the right-handed system.
#. --- *nR=1*,
a first perpendicular direction to the reference axis is defined by setting the element in :math:`R_2`
corresponding to the zero entry in :math:`R_1` to unity.
The second perpendicular direction completes the right-handed system.
#. --- *nR=2*,
a first perpendicular direction to the reference axis is defined by setting the element
corresponding to the first zero entry in :math:`R_1` to unity.
The second perpendicular direction completes the right-handed system.
#. --- *the three centers are nonlinear*,
the first perpendicular direction is the one which is in the plane formed by atoms atom1, atom2, and atom3.
The second perpendicular direction is taken as the direction perpendicular to the same plane.
The direction of the bend for **LAngle(1)** is taken in the direction of the first perpendicular direction, etc.
*rLabel* = LAngle(2) atom1 atom2 atom3
a primitive internal coordinate *rLabel* is defined as the linear angle
between the bonds formed from connecting atom1 to atom2 and
connecting atom2 to atom3. The definition of the perpendicular directions
is as described above. The direction of the bend for **LAngle(2)** is taken in the direction of
the second perpendicular direction.
*rLabel* = Dihedral atom1 atom2 atom3 atom4
a primitive internal coordinate *rLabel* is defined as the angle
between the planes formed of atom1, atom2 and atom3, and atom2,
atom3 and atom4, respectively.
*rLabel* = OutOfP atom1 atom2 atom3 atom4
a primitive internal coordinate *rLabel* is defined as the angle
between the plane formed by atom2, atom3, and atom4 and the
bond formed by connecting atom1 and atom4.
*rLabel* = Dissoc (n1+n2) atom1 atom2 atom3 ... atomN
a primitive internal coordinate *rLabel* is defined as the distance
between the center of masses of two sets of centers. The first
center has n1 members and the second has n2.
The input contains the labels of the atoms of the first group followed
immediately by the labels of the second group.
This option is not available for constraints.
*rLabel* = Cartesian i atom1
a primitive internal coordinate *rLabel* is defined as the pure
Cartesian displacement of the center labeled atom1. The label
i is selected to x, y, or z to give the appropriate component.
*rLabel* = Ediff [i j]
the energy difference between states i and j (if provided, the brackets indicate they
are optional, do not include the brackets).
If i and j are not provided, the difference is between the "current" state and
the state provided on :file:`RUNFILE2`.
This is only used in constrained optimization in which crossings or conical intersections
are located. If this constraint is used, the average energy of the two states will
be optimized, subject to the constraint. If the value is 0.0 and the spin and spatial
symmetry of both states is the same, a conical intersection will be searched.
In this case, :program:`SLAPAF` will request an analytical calculation of the nonadiabatic
coupling vector, if available. If it is not available, or if :file:`RUNFILE2` is being used
(i and j not provided), the branching space update method of Maeda et al. will be used :cite:`Maeda2010`.
*rLabel* = Sphere
the radius of the hypersphere defined by two different molecular structures
(the origin is the first structure) in relative mass-weighted coordinates.
This is only used in constrained optimization in which minimum reaction paths (MEP) or intrinsic reaction
coordinate (IRC) paths are followed. The units of the radius is in mass-weighted coordinates
divided with the square root of the total mass of the molecule.
*rLabel* = Transverse
a level of "orthogonality". This is used to perform an optimization in a space
orthogonal to a given vector. Recommended value 0.0. Requires usage of GRAD keyword.
*rLabel* = Fragment atom1 atom2 atom3 ... atomN
a dummy internal coordinate *rLabel* is defined. This translates to
that a set of internal coordinates are generated automatically according
to a standard Z-matrix format to define all degrees of freedom
of the fragment defined by the list of atoms on the same line. These
internal coordinates will be automatically fixed in the geometry optimizations to
the values of starting structure. Note, the values of these do not need to
be explicitly defined and set in the :kword:`Values` section. Note, too, that
the generation of the internal coordinates is done according to the order
in which atom1, atom2, etc. are given; for some systems, especially with
linear angles, it may be preferable to define the coordinates manually.
The second section starts with the label :kword:`Vary` or in the case of constraints
with the label :kword:`Values`.
.. compound::
In case of a definition of **internal coordinates** in this section the user
specifies all symmetric internal coordinates excluding translation and rotation
using a list of expressions like
*label* = f1 *rLabel1* + f2 *rLabel2* + ...
which defines an internal coordinate *label* as the linear combination of the
primitive internal coordinates *rLabel1*, *rLabel2*, ... with the coefficients
f1, f2, ..., respectively. If the internal coordinate just corresponds to
the primitive internal coordinate, the same label can be used
*label*
If some internal coordinates are chosen to be fixed they should be defined after
the label :kword:`Fix`. The fixed internal coordinate are defined with
expressions as in the section :kword:`Vary`. Observe: using expression can
introduce linear dependence and/or undefined nuclear coordinates, so use with care.
For the internal coordinates defined after :kword:`Vary` (and :kword:`Fix`, if present)
a numerical estimation of rows and columns of the Hessian matrix can be performed. The
*label* of internal coordinates (max 10) must be specified after keyword :kword:`RowH`.
Keywords :kword:`NUMErical` and :kword:`RowH` are mutually exclusive.
.. compound::
In case of a definition of **constraints** the sections contains either a
direct reference to a *rLabel* as in
*rLabel* = *rValue* [angstrom,degrees] [Soft,Hard] [Phantom]
or one can also use expressions like
f1 *rLabel1* |+-| f2 *rLabel2* |+-| ... = *Value* [angstrom,degrees] [Soft,Hard] [Phantom]
where *rValue* is the desired value of the constraint in au or rad, or in
angstrom or degrees if the corresponding keyword is added. The "Hard" and "Soft"
keywords are only meaningful for numerical differentiation: the coordinates corresponding
to soft constraints are differentiated, those of hard constraints are not :cite:`Stenrup2015`.
By default almost all constraints are hard, only constraints of the type "Sphere", "Transverse"
and "Ediff" default to soft. The "Hard" and "Soft" keywords override the default.
When using constraints in combination with the :kword:`FINDTS` keyword, one should use
soft constraints, at least for the constraint most similar to the expected reaction vector.
Constraints defined in :kword:`TSCOnstraints` (recommended) are automatically considered
soft.
The "Phantom" modifier can be used to ignore a constraint in the optimization. A phantom
constraint will only be considered for numerical differentiation. Phantom constraints are
useful in combination with the :kword:`KEEPOldGradient` keyword of :program:`ALASKA`.
Using :kword:`NGEXclude` in :program:`GATEWAY` is equivalent to phantom constraints,
and it is the preferred way to set up composite gradients :cite:`Stenrup2015`.
Alternatively, if the current value of an internal coordinate is to be used, i.e.
no change is to be allowed (frozen), this is expressed as
*rLabel* = Fix [Soft,Hard] [Phantom]
Note that a coordinate of type "Fragment" does not need to appear in the :kword:`Values`
section, but if it does it must be assigned the value "Fix".
Example: A definition of user specified internal coordinates of benzene. The molecule is
in :math:`D_{6h}` and since |molcas| only uses up to :math:`D_{2h}` the
:kword:`Fix` option is used to
constrain the relaxation to the higher point group. **Observe** that this will
only restrict the nuclear coordinates to :math:`D_{6h}`. The electronic wavefunction,
however, can have lower symmetry. ::
Internal coordinates
r1 = Bond C1 C2
r2 = Bond C1 H1
r3 = Bond C2 H2
r4 = Bond C2 C2(x)
f1 = Angle H1 C1 C2
f2 = Angle H2 C2 C1
Vary
a = 1.0 r1 + 1.0 r4
b = 1.0 r2 + 1.0 r3
c = 1.0 f1 + 1.0 f2
Fix
a = 1.0 r1 + -1.0 r4
b = 1.0 r2 + -1.0 r3
c = 1.0 f1 + -1.0 f2
End of Internal
Example: A input for the optimization of water constraining the structure to be linear
at convergence.
.. extractfile:: ug/SLAPAF.constrains.input
&GATEWAY
Title= H2O geom optim, using the ANO-S basis set.
Coord=$MOLCAS/Coord/Water.xyz
Basis=ANO-S-VDZ
Group= c1
Constraints
a1 = langle(1) H2 O1 H3
Values
a1 = 179.99 degrees
End of Constraints
>>> DO WHILE <<<
&SEWARD; &SCF
&SLAPAF
>>> END DO <<<
Example: A complete set of input decks for a UHF transition
structure geometry optimization of an identity hydrogen
transfer reaction (:math:`\ce{HO + H_2O -> H_2O + OH}`).
.. extractfile:: ug/SLAPAF.Zmat.input
&GATEWAY
ZMAT
O.STO-3G....
H.STO-3G....
H1
Z2 1 1.0
O3 1 1.15 2 92.
O4 1 1.15 2 92. 3 180.
H5 3 0.98 4 105.4 2 120.
H6 4 0.98 3 105.4 2 120.
>>> DO WHILE <<<
&SEWARD;
&SCF; UHF
&SLAPAF; TS; PRFC
Internal
bOO4 = Bond O3 O4
bOH5 = Bond H5 O3
bOH6 = Bond H6 O4
bOH1 = Bond O3 H1
aOOH5 = Angle O4 O3 H5
aOOH6 = Angle O3 O4 H6
aHOH1 = Angle H5 O3 H1
dH6 = Dihedral H6 O4 O3 H5
dH1 = Dihedral O4 H5 O3 H1
Vary; bOO4; bOH5; bOH6; bOH1; aOOH5; aOOH6; aHOH1; dH6; dH1
RowH; bOH1
End of Internal
>>> ENDDO <<<
Example: Optimization of a minimum energy conical intersection point,
using automatic calculation of analytical gradients and nonadiabatic coupling.
.. extractfile:: ug/SLAPAF.CI.input
&GATEWAY
Coord = acrolein.xyz
Basis = cc-pVDZ
Group = NoSymm
Constraints
a = Ediff 1 2
Values
a = 0.0
End of constraints
>>> DoWhile
&SEWARD
>>> If (iter = 1)
&SCF
&MBPT2
PrPt
>>> EndIf
&RASSCF
FileOrb = $Project.MP2Orb
Charge = 0
NActEl = 6 0 0
RAS2 = 5
CIRoot = 4 4 1
&SLAPAF
>>> EndDo
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="REDUNDANT" KIND="SINGLE" LEVEL="UNDOCUMENTED" />
.. xmldoc:: <KEYWORD MODULE="SLAPAF" NAME="NOEMEP" KIND="SINGLE" LEVEL="UNDOCUMENTED" />
.. xmldoc:: </MODULE>
.. xmldoc:: <MODULE NAME="LAST_ENERGY">
</MODULE>
|