1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
.. index::
single: Program; VibRot
single: VibRot
.. _UG\:sec\:vibrot:
:program:`vibrot`
=================
.. only:: html
.. contents::
:local:
:backlinks: none
.. xmldoc:: <MODULE NAME="VIBROT">
%%Description:
<HELP>
This program computes the vibrational-rotational spectrum of a
diatomic molecule. In addition, spectroscopic constants are computed.
The program can also compute transition probabilities and lifetimes
for excited states.
</HELP>
The program :program:`VIBROT` is used to compute a vibration-rotation
spectrum for a diatomic molecule, using as input a potential
computed over a grid. The grid should be dense around equilibrium (recommended
spacing 0.05 au) and should extend to large distance (say 50 au) if
dissociation energies are computed.
The potential is fitted to an analytical form using cubic splines. The
ro-vibrational Schrödinger equation is then solved numerically
(using Numerov's method) for one vibrational state at a time and for a
number of rotational quantum numbers as specified by input. The
corresponding wave functions are stored on file
:file:`VIBWVS` for later use. The ro-vibrational energies
are analyzed in terms of spectroscopic constants. Weakly bound potentials can be
scaled for better numerical precision.
The program can also be fed with property functions, such as a dipole moment
curve. Matrix elements over the ro-vib wave functions for the property in
question are then computed. These results can be used to compute IR
intensities and vibrational averages of different properties.
:program:`VIBROT` can also be used to compute transition properties between
different electronic states. The program is then run twice to produce two files
of wave functions. These files are used as input in a third run, which will
then compute transition matrices for input properties. The main use is to
compute transition moments, oscillator strengths, and lifetimes for ro-vib
levels of electronically excited states. The asymptotic energy difference
between the two electronic states must be provided using the :kword:`ASYMptotic`
keyword.
.. index::
pair: Dependencies; VibRot
.. _UG\:sec\:vibrot_dependencies:
Dependencies
------------
The :program:`VIBROT` is free-standing and does not depend on any
other program.
.. index::
pair: Files; VibRot
.. _UG\:sec\:vibrot_files:
Files
-----
Input files
...........
The calculation of vibrational wave functions and spectroscopic
constants uses no input files (except for the standard input).
The calculation of transition properties uses
:file:`VIBWVS` files from two preceding
:program:`VIBROT` runs, redefined as
:file:`VIBWVS1` and
:file:`VIBWVS2`.
Output files
............
:program:`VIBROT` generates the file
:file:`VIBWVS` with vibrational wave functions for each :math:`v` and :math:`J` quantum
number, when run in the wave function mode. If requested :program:`VIBROT` can
also produce files :file:`VIBPLT` with the fitted potential and property
functions for later plotting.
.. index::
pair: Input; VibRot
.. _UG\:sec\:vibrot_input:
Input
-----
This section describes the input to the :program:`VIBROT` program in the
|molcas| program system. The program name is ::
&VIBROT
.. index::
pair: Keywords; VibRot
Keywords
........
The first keyword to
:program:`VIBROT` is an indicator for the type of calculation
that is to be performed. Two possibilities exist:
.. class:: keywordlist
:kword:`ROVIbrational spectrum`
:program:`VIBROT` will perform a vib-rot analysis and compute
spectroscopic constants.
.. xmldoc:: <SELECT MODULE="VIBROT" NAME="TYPE" APPEAR="Calculation type" CONTAINS="ROVIB,TRANS">
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="ROVIB" APPEAR="Start vib-rot analysis" KIND="SINGLE" LEVEL="BASIC" EXCLUSIVE="TRANS">
%%Keyword: ROVIbrational <basic>
<HELP>
Perform a vib-rot analysis and compute spectroscopic constants.
</HELP>
</KEYWORD>
:kword:`TRANsition moments`
:program:`VIBROT` will compute transition moment integrals
using results from two previous calculations of the vib-rot wave
functions. In this case the keyword :kword:`Observable` should be
included, and it will be interpreted as the transition dipole moment.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="TRANS" APPEAR="Compute transition moments" KIND="SINGLE" LEVEL="BASIC" EXCLUSIVE="ROVIB">
%%Keyword: TRANsition <basic>
<HELP>
Compute transition moment integrals using previous vib-rot wave
functions.
</HELP>
</KEYWORD>
.. xmldoc:: </SELECT>
Note that only one of the above keywords can be used in a single
calculation. If none is given the program will only process the input
section.
After this first keyword follows a set of keywords, which are used to
specify the run. Most of them are optional.
The compulsory keywords are:
.. class:: keywordlist
:kword:`ATOMs`
Gives the mass of the two atoms. Write mass number (an integer) and the
chemical symbol Xx, in this order, for each of the two atoms in free format. If
the mass numbers is zero for any atom, the mass of the most abundant isotope
will be used. All isotope masses are stored in the program. You may introduce
your own masses by giving a negative integer value to the mass number (one of
them or both). The masses (in unified atomic mass units, or Da) are then read
on the next (or next two) entry(ies). The isotopes of hydrogen can be given as
H, D, or T.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="ATOMS" APPEAR="The two atoms" KIND="CUSTOM" LEVEL="BASIC">
%%Keyword: ATOMs <basic>
<HELP>
Read the mass number and chemical symbol of the atoms from the next line.
If the mass number is zero the mass of the most abundant isotope will be
used. Use a negative mass number to input the mass (in unified atomic mass
units) in the next entry.
</HELP>
</KEYWORD>
:kword:`POTEntial`
Gives the potential as an arbitrary number of lines. Each line
contains a bond distance (in au) and an energy value (in au). A plot file of the
potential is generated if the keyword
:kword:`Plot` is added after the last energy input. One more entry should then follow
with three numbers
specifying the start and end value for the internuclear distance and
the distance between adjacent plot points. This input must only be
given together with the keyword :kword:`RoVibrational spectrum`.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="POTE" APPEAR="Potential" KIND="CUSTOM" LEVEL="BASIC">
<ALTERNATE KIND="STRING" />
%%Keyword: POTEntial <basic>
<HELP>
Read the potential from a file (in au). Format: distance, value one pair on
each line. Only together with vib-rot calculation.
</HELP>
</KEYWORD>
In addition you may want to specify some of the following optional
input:
.. class:: keywordlist
:kword:`TITLe`
One single title line
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="TITLE" APPEAR="Title" KIND="STRING" LEVEL="BASIC">
%%Keyword: TITLe <basic>
<HELP>
One single title line
</HELP>
</KEYWORD>
:kword:`GRID`
The next entries give the number of grid points used in the numerical
solution of the radial Schrödinger equation. The default value is
199. The maximum value that can be used is 4999.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="GRID" APPEAR="Numerical grid" KIND="INT" LEVEL="BASIC" DEFAULT_VALUE="199" MIN_VALUE="1" MAX_VALUE="4999">
%%Keyword: GRID <basic>
<HELP>
Give the number of numerical grid points (default is 199, max is 4999).
</HELP>
</KEYWORD>
:kword:`RANGe`
The next entry contains two distances Rmin and Rmax (in au) specifying
the range in which the vibrational wave functions will be computed.
The default values are 1.0 and 5.0 au. Note that these values most
often have to be given as input since they vary considerably from one
case to another. If the range specified is too small, the program will
give a message informing the user that the vibrational wave function
is large outside the integration range.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="RANGE" APPEAR="Integration range" KIND="REALS" SIZE="2" LEVEL="BASIC" DEFAULT_VALUES="1.0,5.0">
%%Keyword: RANGe <basic>
<HELP>
Give the range (Rmin-Rmax) in which the wave functions will be computed
in atomic units. Default is 1.0-5.0 au.
</HELP>
</KEYWORD>
:kword:`VIBRational`
The next entry specifies the number of vibrational quanta for which the
wave functions and energies are computed. Default value is 3.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="VIBR" APPEAR="Vibrational quanta" KIND="INT" LEVEL="BASIC" DEFAULT_VALUE="3" MIN_VALUE="1">
%%Keyword: VIBRational <basic>
<HELP>
Specify the number of vibrational quanta (default is 3).
</HELP>
</KEYWORD>
:kword:`ROTAtional`
The next entry specifies the range of rotational quantum numbers.
Default values are 0 to 5. If the orbital angular momentum quantum
number (:math:`m_\ell`) is non zero, the lower value will be adjusted to
:math:`m_\ell` if the start value given in input is smaller than
:math:`m_\ell`.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="ROTA" APPEAR="Rotational quanta" KIND="INTS" SIZE="2" LEVEL="BASIC" DEFAULT_VALUES="0,5" MIN_VALUE="0">
%%Keyword: ROTAtional <basic>
<HELP>
Specify the range of rotational quantum numbers (default is 0-5).
</HELP>
</KEYWORD>
:kword:`ORBItal`
The next entry specifies the value of the orbital angular momentum
(0, 1, 2, etc.). Default value is zero.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="ORBI" APPEAR="Orbital angular momentum" KIND="INT" LEVEL="BASIC" DEFAULT_VALUE="0" MIN_VALUE="0">
%%Keyword: ORBItal <basic>
<HELP>
Specify the orbital angular momentum:, 0, 1, 2, ... (default is 0).
</HELP>
</KEYWORD>
:kword:`SCALe`
This keyword is used to scale the potential, such that the
binding energy is 0.1 au. This leads to better precision in the numerical
procedure and is strongly advised for weakly bound potentials.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="SCALE" APPEAR="Scaled potential" KIND="SINGLE" LEVEL="BASIC">
%%Keyword: SCALe <basic>
<HELP>
The potential will be scaled to a bond energy of 0.1 au.
</HELP>
</KEYWORD>
:kword:`NOSPectroscopic`
Only the wave function analysis will be carried out but not the
calculation of spectroscopic constants.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="NOSP" APPEAR="No spectroscopic constants" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword: NOSPectroscopic <advanced>
<HELP>
No calculation of spectroscopic constants.
</HELP>
</KEYWORD>
:kword:`OBSErvable`
This keyword indicates the start of input for radial functions of observables
other than the energy, for example the dipole moment function. The next line
gives a title for this observable. An arbitrary number of input lines follows.
Each line contains a distance and the corresponding value for the observable.
As for the potential, this input can also end with the keyword :kword:`Plot`,
to indicate that a file of the function for later plotting is to be constructed.
The next line then contains the minimum and maximum R-values and the
distance between adjacent points. When this input is given with the top keyword
:kword:`RoVibrational spectrum` the program will compute matrix elements for
vibrational wave functions of the current electronic state. Transition moment
integrals are instead obtained when the top keyword is :kword:`Transition
moments`. In the latter case the calculation becomes rather meaningless if
this input is not provided. The program will then only compute the overlap
integrals between the vibrational wave functions of the two states.
The keyword :kword:`Observable` can be repeated up to ten times in a
single run. All observables should be given in atomic units.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="OBSE" APPEAR="Observable" KIND="CUSTOM" LEVEL="BASIC">
%%Keyword: OBSErvable <basic>
<HELP>
Input for radial functions of observables (in au). The input is read from a
file. The user is asked to read the users guide to learn how to construct
this file.
</HELP>
</KEYWORD>
:kword:`TEMPerature`
The next entry gives the temperature (in K) at which the vibrational
averaging of observables will be computed. The default is 300 K.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="TEMP" APPEAR="Temperature" KIND="REAL" LEVEL="ADVANCED" DEFAULT_VALUE="300.0" MIN_VALUE="0.0">
%%Keyword: TEMPerature <advanced>
<HELP>
Temperature for vibrational averaging of observables (default is 300 K).
</HELP>
</KEYWORD>
:kword:`STEP`
The next entry gives the starting value for the energy step used in
the bracketing of the eigenvalues. The default value is 0.004 au
(88 :math:`\text{cm}^{-1}`). This value must be smaller than the
zero-point vibrational energy of the molecule.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="STEP" APPEAR="Numerical step size" KIND="REAL" LEVEL="ADVANCED" DEFAULT_VALUE="0.004" MIN_VALUE="0.0">
%%Keyword: STEP <advanced>
<HELP>
Give the starting value for the energy step used in bracketing eigenvalues.
Should be smaller than the zero point energy (default is 0.004 au).
</HELP>
</KEYWORD>
:kword:`ASYMptotic`
The next entry specifies the asymptotic energy difference between
two potential curves in a calculation of transition matrix elements.
The default value is zero atomic units.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="ASYM" APPEAR="Asymptotic energy difference" KIND="REAL" LEVEL="BASIC" DEFAULT_VALUE="0.0">
%%Keyword: ASYMptotic <basic>
<HELP>
Specify the asymptotic energy difference between two potential curves in a
calculation of transition matrix elements (default is 0.00 au).
</HELP>
</KEYWORD>
:kword:`ALLRotational`
By default, when the :kword:`Transition moments` keyword is given, only the
transitions between the lowest rotational level in each vibrational state are
computed. The keyword :kword:`AllRotational` specifies that the transitions
between all the rotational levels are to be included. Note that this may result
in a very large output file.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="ALLR" APPEAR="All rotational levels" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword: ALLRotational <advanced>
<HELP>
Include all rotational levels in a transition moments calculation.
</HELP>
</KEYWORD>
:kword:`PRWF`
Requests the vibrational wave functions to be printed in the output file.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="PRWF" APPEAR="Print wave functions" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword: PRWF <advanced>
<HELP>
Requests the vibrational wave functions to be printed.
</HELP>
</KEYWORD>
:kword:`DISTunit`
Unit used for distances in the input potential. The default is `BOHR`. Other
options include `ANGSTROM` and `PICOMETER`. The short form `PM` can also be used,
instead of `PICOMETER`.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="DIST" APPEAR="Distance unit" KIND="CHOICE" LIST="BOHR,ANGSTROM,PICOMETER" LEVEL="BASIC">
%%Keyword: DISTunit <basic>
<HELP>
Specifies the unit used for distances in the input potential.
</HELP>
</KEYWORD>
:kword:`ENERunit`
Unit used for energies in the input potential. The default is `HARTREE`. Other
options include `ELECTRONVOLT`, `KCAL/MOL`, `KJ/MOL`, `CM-1`, and `MEGAHERTZ`.
The short form `EV` can be used instead of `ELECTRONVOLT` and likewise `MHZ`
can be used instead of `MEGAHERTZ`.
.. xmldoc:: <KEYWORD MODULE="VIBROT" NAME="ENER" APPEAR="Energy unit" KIND="CHOICE" LIST="HARTREE,ELECTRONVOLT,KCAL/MOL,KJ/MOL,CM-1,MEGAHERTZ" LEVEL="BASIC">
%%Keyword: ENERunit <basic>
<HELP>
Specifies the unit used for energies in the input potential.
</HELP>
</KEYWORD>
Input example
.............
::
&VIBROT
RoVibrational spectrum
Title = H2 (^1 Pi_u)
Atoms = 0 H 0 H
Potential
0.4233417991952784 -93390.8116364055
0.5291772489940979 -125520.5784258792
0.5820949738935077 -135202.0740308874
0.6350126987929174 -142230.7885620708
0.6879304236923273 -147325.2117261678
0.7408481485917370 -150985.4845047687
0.7937658734911469 -153567.9481018878
0.8466835983905567 -155331.6637865382
0.8996013232899664 -156468.2460791877
0.9525190481893763 -157121.6176632051
1.0054367730887860 -157401.2568735270
1.0583544979881960 -157391.4024626400
1.1112722228876060 -157157.4776230008
1.1641899477870150 -156750.6989542662
1.2700253975858350 -155571.7997582064
1.4816962971834740 -152450.7563927988
1.6933671967811130 -149070.0021134733
1.9050380963787530 -145873.2312217305
2.1167089959763920 -143043.6172437684
2.6458862449704900 -137805.7761879516
3.1750634939645880 -134764.6588985511
5.2917724899409790 -131360.0872323780
DistUnit = angstrom
EnerUnit = cm-1
Grid = 450
Range = 0.4 5.0
Vibrations = 3
Rotations = 1 4
Orbital = 1
Observable
Dipole Moment
0.4233417991952784 0.57938359
0.5291772489940979 0.62852037
0.5820949738935077 0.65216622
0.6350126987929174 0.67506184
0.6879304236923273 0.69709869
0.7408481485917370 0.71821433
0.7937658734911469 0.73833904
0.8466835983905567 0.75741713
0.8996013232899664 0.77538706
0.9525190481893763 0.79219774
1.0054367730887860 0.80778988
1.0583544979881960 0.82211035
1.1112722228876060 0.83510594
1.1641899477870150 0.84672733
1.2700253975858350 0.86565481
1.4816962971834740 0.88532063
1.6933671967811130 0.88056207
1.9050380963787530 0.85474708
2.1167089959763920 0.81515210
2.6458862449704900 0.70549066
3.1750634939645880 0.62103112
5.2917724899409790 0.46501146
Plot = 1.0 10.0 0.1
Scale
**Comments**: The vibrational-rotation spectrum for the :math:`^1\Pi_u` state of \
:math:`\ce{H2}` will be computed using the potential curve given in the input. The 3
lowest vibrational levels will be obtained and for each level for the
rotational states in the range :math:`J`\=1 to 4. The mass for
the most abundant isotope of :math:`\ce{H}` will be used. The vib-rot matrix elements
of the dipole function will also be computed. A plot file of the
potential and the dipole function will be generated.
.. xmldoc:: </MODULE>
|