File: wfa.rst

package info (click to toggle)
openmolcas 25.02-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 170,204 kB
  • sloc: f90: 498,088; fortran: 139,779; python: 13,587; ansic: 5,745; sh: 745; javascript: 660; pascal: 460; perl: 325; makefile: 17
file content (477 lines) | stat: -rw-r--r-- 18,668 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
.. index::
   single: Program; WFA
   single: WFA

.. _UG\:sec\:wfa:

:program:`wfa`
================

.. warning::

   This program requires a submodule.

.. only:: html

  .. contents::
     :local:
     :backlinks: none

.. xmldoc:: <MODULE NAME="WFA">
            %%Description:
            <HELP>
            The WFA program of the molcas program system provides various
            visual and quantitative wavefunction analysis methods.
            </HELP>

The :program:`WFA` program of the |molcas| program system provides various
visual and quantitative wavefunction analysis methods.
It is based on the libwfa :cite:`libwfa,libwfa2022` wavefunction analysis library.
The interface to |molcas| is described in Ref. :cite:`Molcas_libwfa`.

.. Quantitative analysis methods are printed to the standard output, orbital coefficients are
   written to the HDF5 file that is used for input and output, and input files
   for the external TheoDORE program are created.

The program computes natural transition
orbitals (NTO) :cite:`Martin2003,Plasser2014`, which provide a compact description of
one-electron excited states. Natural difference orbitals (NDO) :cite:`Plasser2014` can be
computed to visualize many-body effects and orbital relaxation effects :cite:`Plasser2014b`. A module for the
statistical analysis of exciton wavefunctions is included :cite:`Bappler2014,Plasser2015`,
which provides various quantitative descriptors to describe the excited states.
Output is printed for the 1-electron transition density matrix (1TDM) and for the 1-electron difference density matrix (1DDM).
A decomposition into local and charge transfer contributions on different chromophores
is possible through the charge transfer number analysis :cite:`Plasser2012`,
which has been integrated into |molcas| recently.
Postprocessing is possible through the external `TheoDORE <https://theodore-qc.sourceforge.net/>`_ :cite:`TheoDORE` program.

:program:`WFA` supports full use of spatial symmetry and can analyse transitions between
different spin multiplicities and particle numbers.

Installation
------------

The :program:`WFA` module is currently not installed by default.
Its installation occurs via CMake.
It requires a working HDF5 installation (including C++ bindings) and access to the include files of the Armadillo C++ linear algebra library.
In the current settings, external BLAS/LAPACK libraries have to be used.
Use, e.g., the following commands for installation: ::

  FC=ifort cmake -D LINALG=MKL -D WFA=ON -D ARMADILLO_INC=../armadillo-7.300.0/include ..

To obtain the required libraries, you can use on Ubuntu: ::

  sudo apt install libhdf5-dev libhdf5-cpp-103

Alternatively, you can link against the dynamic HDF5 libraries distributed
along with `Anaconda <https://www.anaconda.com/>`_.

.. _UG\:sec\:wfa_dependencies:

Dependencies
------------

The :program:`WFA` program requires HDF5 files, which are written by either
:program:`SCF`, :program:`RASSCF`, or :program:`RASSI`. In the case of :program:`RASSI`,
the :kword:`TDM` (or :kword:`TRD1`) keyword has to be activated.

.. _UG\:sec\:wfa_files:

Files
-----

Input files
...........

.. class:: filelist

:file:`WFAH5`
  All information that the :program:`WFA` program needs is contained in this HDF5 file.
  The name can be adjusted with the :kword:`H5FIle` option.

Output files
............

.. class:: filelist

:file:`WFAH5`
  The orbital coefficients of NOs, NTOs, and NDOs are written to the same HDF5 file that
  is also used for input.

:file:`*.om`
  These are input files for the external TheoDORE program.

:file:`OmFrag.txt`
  Input file for TheoDORE.

For a seamless interface to TheoDORE, you can also create the :file:`tden_summ.txt` file via ::

  grep '^|' molcas.log > tden_summ.txt

The NOs, NTOs, and NDOs on the HDF5 file can be accessed via `Pegamoid <https://pypi.org/project/Pegamoid/>`_.
Alternatively, the orbitals can be converted to Molden format via the `Molpy program <https://github.com/felixplasser/molpy>`_. Call, e.g.: ::

  penny molcas.rassi.h5 --wfaorbs molden

.. _UG\:sec\:wfa_input:

Input
-----

The input for the :program:`WFA` module is preceded by: ::

  &WFA

Keywords
........

Basic Keywords:

.. class:: keywordlist

:kword:`H5FIle`
  Specifies the name of the HDF5 file used for reading and writing
  (e.g. :file:`$Project.scf.h5`, :file:`$Project.rasscf.h5`, :file:`$Project.rassi.h5`).
  You either have to use this option or rename the file of
  interest to :file:`WFAH5`.

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="H5FILE" APPEAR="HDF5 file" KIND="STRING" LEVEL="BASIC">
              %%Keyword:H5FIle <basic>
              <HELP>
              Specifies the name of the HDF5 file used for reading and writing
              (e.g. $Project.scf.h5, $Project.rasscf.h5, $Project.rassi.h5).
              You either have to use this option or rename the file of
              interest to WFAH5.
              </HELP>
              </KEYWORD>

:kword:`WFALevel`
  Select how much output is produced (0-4, default: 3).

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="WFALEVEL" APPEAR="Print level" KIND="CHOICE" LIST="0,1,2,3,4" LEVEL="BASIC" DEFAULT_VALUE="3">
              %%Keyword:WFALevel <basic>
              <HELP>
              Select how much output is produced (0-4, default: 3).
              </HELP>
              </KEYWORD>

:kword:`CTNUmmode`
  Specifies what properties are computed in a `TheoDORE <https://theodore-qc.sourceforge.net/>`_-style fragment-based analysis (0-3, default: 1).
  This requires defining fragments via :kword:`ATLIsts`.

  0 --- none

  1 --- Basic: POS, PR, DEL, CT, CTnt

  2 --- Extended:  POS, POSi, POSf, PR, PRi, PRf, DEL, COH, CT, CTnt

  3 --- For transition metal complexes: POSi, POSf, PR, CT, MC, LC, MLCT, LMCT, LLCT

  The definition of the descriptors is provided
  `here <https://sourceforge.net/p/theodore-qc/wiki/Transition%20density%20matrix%20analysis/attachment/Om_desc.pdf>`_.
  For a more fine-grained input use :kword:`PROPlist`.

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="CTNUMMODE" APPEAR="Computed properties" KIND="CHOICE" LIST="0: None,1: Basic,2: Extended,3: Metal complexes" LEVEL="BASIC" DEFAULT_VALUE="1" REQUIRE="ATLISTS">
              %%Keyword:CTNUmmode <basic>
              <HELP>
              Define what properties are computed in a TheoDORE-style analysis. (0-3, default: 1).
              </HELP>
              </KEYWORD>

:kword:`ATLIsts`
  Define the fragments in a `TheoDORE <https://theodore-qc.sourceforge.net/>`_-style analysis.
  *Note:* If symmetry is turned on, then |molcas| may reorder the atoms.
  In this case it is essential to take the order |molcas| produced (seen for example in the Molden files).

  The first entry is the number of fragments.
  Then enter the atomic indices of the fragment followed by a \*.
  Example: ::

    ATLISTS
    2
    1 2 4 *
    3 *

  *Note:* This input can be generated automatically via TheoDORE by suppling a file with
  coordinates coord.mol and running ::

    theodore theoinp -a coord.mol

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="ATLISTS" APPEAR="Fragment definition" KIND="CUSTOM" LEVEL="BASIC">
              %%Keyword:ATLIsts <basic>
              <HELP>
              Define the fragments in a TheoDORE-style analysis.
              </HELP>
              </KEYWORD>

:kword:`REFState`
  Index of the reference state for 1TDM and 1DDM analysis (default: 1).

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="REFSTATE" APPEAR="Reference state" KIND="INT" LEVEL="BASIC" DEFAULT_VALUE="1">
              %%Keyword:REFState <basic>
              <HELP>
              Index of the reference state for 1TDM and 1DDM analysis.
              </HELP>
              </KEYWORD>

Advanced keywords for fine grain output options and debug information:

.. class:: keywordlist

:kword:`MULLiken`
  Activate Mulliken population analysis (also for CT numbers).

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="MULLIKEN" APPEAR="Mulliken population analysis" KIND="SINGLE" LEVEL="ADVANCED">
              %%Keyword:MULLiken <advanced>
              <HELP>
              Activate Mulliken population analysis.
              </HELP>
              </KEYWORD>

:kword:`LOWDin`
  Activate Löwdin population analysis (also for CT numbers).

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="LOWDIN" APPEAR="Lowdin population analysis" KIND="SINGLE" LEVEL="ADVANCED">
              %%Keyword:LOWDin <advanced>
              <HELP>
              Activate Lowdin population analysis.
              </HELP>
              </KEYWORD>

:kword:`NXO`
  Activate NO, NTO, and NDO analysis.

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="NXO" APPEAR="NXO analysis" KIND="SINGLE" LEVEL="ADVANCED">
              %%Keyword:NXO <advanced>
              <HELP>
              Activate NO, NTO, and NDO analysis.
              </HELP>
              </KEYWORD>

:kword:`EXCIton`
  Activate exciton and multipole analysis.

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="EXCITON" APPEAR="Exciton analysis" KIND="SINGLE" LEVEL="ADVANCED">
              %%Keyword:EXCIton <advanced>
              <HELP>
              Activate exciton and multipole analysis.
              </HELP>
              </KEYWORD>

:kword:`DOCTnumbers`
  Activate charge transfer number analysis and creation of :file:`*.om` files.

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="DOCTNUMBERS" APPEAR="Charge transfer numbers" KIND="SINGLE" LEVEL="ADVANCED">
              %%Keyword:DOCTnumbers <advanced>
              <HELP>
              Activate charge transfer number analysis and creation of *.om files.
              </HELP>
              </KEYWORD>

:kword:`H5ORbitals`
  Print the NOs, NTOs, and/or NDOs to the HDF file.

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="H5ORBITALS" APPEAR="Save orbitals in HDF5" KIND="SINGLE" LEVEL="ADVANCED">
              %%Keyword:H5ORbitals <advanced>
              <HELP>
              Print the NOs, NTOs, and/or NDOs to the HDF file.
              </HELP>
              </KEYWORD>

:kword:`PROPlist`
  Manual input of properties to be printed out in a `TheoDORE <https://theodore-qc.sourceforge.net/>`_-style fragment based analysis.
  Use only if :kword:`CTNUMMODE` does not provide what you want.

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="PROPLIST" APPEAR="Property list" KIND="CUSTOM" LEVEL="ADVANCED">
              %%Keyword:PROPlist <advanced>
              <HELP>
              Manual input of properties to be printed out in a TheoDORE-style analysis.
              </HELP>
              </KEYWORD>

  Enter as a list followed by a \*, e.g. ::

    PROPLIST
    Om POS PR CT COH CTnt *

  The full list of descriptors is provided
  `here <https://sourceforge.net/p/theodore-qc/wiki/Transition%20density%20matrix%20analysis/attachment/Om_desc.pdf>`_.

:kword:`DEBUg`
  Print debug information.

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="DEBUG" APPEAR="Print debug information" KIND="SINGLE" LEVEL="ADVANCED">
              %%Keyword:DEBUg <advanced>
              <HELP>
              Print debug information.
              </HELP>
              </KEYWORD>

:kword:`ADDInfo`
  Add info for verification runs with :command:`pymolcas verify`.

  .. xmldoc:: <KEYWORD MODULE="WFA" NAME="ADDINFO" APPEAR="Add info" KIND="SINGLE" LEVEL="ADVANCED">
              %%Keyword:ADDInfo <advanced>
              <HELP>
              Add info for verifications runs with molcas verify.
              </HELP>
              </KEYWORD>

Input example
.............

::

  * Analysis of SCF job
  &SCF

  &WFA
  H5file = $Project.scf.h5

::

  * Analysis of RASSCF job
  * Reduced output
  &RASSCF

  &WFA
  H5file = $Project.rasscf.h5
  wfalevel = 1

::

  * Analysis of RASSI job, use the TDM keyword
  &RASSI
  EJOB
  TDM

  &WFA
  H5file = $Project.rassi.h5
  ATLISTS
  2
  1 2 4 *
  3 *

Large jobs
..........

The computational effort spent in :program:`RASSI` and the size of the file :file:`$Project.rassi.h5` scale with the square of the number of states included in the computation.
This can be a severe bottleneck.
To reduce the time spent in :program:`RASSI` use the :kword:`HEFF` or :kword:`EJOB` keywords;
these will cause RASSI to read in the Hamiltonian rather than recomputing it.
To reduce the output to the file :file:`$Project.rassi.h5` use :kword:`SUBSets = 1`.
Note that this only works if the reference state is the first state treated by RASSI
(and that is always possible if the states are reordered appropriately via :kword:`NROF`).

::

  &RASSI
  TDM
  EJOB
  SUBSets = 1

  &WFA
  H5file = $Project.rassi.h5
  REFState = 1

Subsequently you may reduce the file size by repacking the HDF5 file: ::

  h5repack -f GZIP=5 $Project.rassi.h5 $Project.rassi-repack.h5 && rm $Project.rassi.h5

Alternatively, you can avoid the quadratic scaling in :program:`RASSI` by processing states in batches specified via the :kword:`NROF` keyword.
As an extreme example, you can iterate over individual states using the following input
(here the 10 states of `JOB002` are analysed using the first state of `JOB001` as reference):

::
  
  >> FOREACH IST in (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

  &RASSI
  TDM
  NROF
  2 1 1
  1
  $IST

  >> COPY $Project.rassi.h5 $Project.rassi.$IST.h5

  &WFA
  h5file=$Project.rassi.$IST.h5

  >> ENDDO


.. _UG\:sec\:wfa_output:

Output
------

State/difference density matrix analysis (:program:`SCF`/:program:`RASSCF`/:program:`RASSI`)
............................................................................................

.. compound::

  ::

    RASSCF analysis for state 2 (3) A

  or ::

    RASSI analysis for state S1

.. _tab\:wfa_dm:

================================= =========================================================================================
Descriptor                        Explanation
================================= =========================================================================================
``n_u``                           Number of unpaired electrons :math:`n_u=\sum_i\min(n_i, 2-n_i)` :cite:`Head-Gordon2003,Plasser2014`
``n_u,nl``                        Number of unpaired electrons :math:`n_{u,nl}=\sum_i n_i^2(2-n_i)^2`
``PR_NO``                         NO participation ratio :math:`\text{PR}_{\text{NO}}`
``p_D`` and ``p_A``               Promotion number :math:`p_D` and :math:`p_A`
``PR_D`` and ``PR_A``             D/A participation ratio :math:`\text{PR}_D` and :math:`\text{PR}_A`
``Dipole moment [D]``             Dipole moment (and its Cartesian components)
``RMS size of the density [Ang]`` Root-mean-square size of the overall electron density
``<r_h> [Ang]``                   Mean position of detachment density :math:`\vec{d}_D` :cite:`Plasser2015`
``<r_e> [Ang]``                   Mean position of attachment density :math:`\vec{d}_A`
``|<r_e - r_h>| [Ang]``           Linear D/A distance :math:`\vec{d}_{D\rightarrow A} = \vec{d}_A - \vec{d}_D`
``Hole size [Ang]``               RMS size of detachment density :math:`\sigma_D`
``Electron size [Ang]``           RMS size of attachment density :math:`\sigma_A`
================================= =========================================================================================

Transition density matrix analysis (:program:`RASSI`)
.....................................................

::

  RASSI analysis for transition from state 1 to 2 (S0-S1)

.. _tab\:wfa_tdm:

====================================== =============================================================================================================================
Output listing                         Explanation
====================================== =============================================================================================================================
``Leading SVs``                        Largest NTO occupation numbers
``Sum of SVs (Omega)``                 :math:`\Omega`, Sum of NTO occupation numbers
``PR_NTO``                             NTO participation ratio :math:`\text{PR}_{\text{NTO}}` :cite:`Plasser2012`
``Entanglement entropy (S_HE)``        :math:`S_{H|E}=-\sum_i\lambda_i\log_2\lambda_i` :cite:`Plasser2016`
``Nr of entangled states (Z_HE)``      :math:`Z_{HE}=2^{S_{H|E}}`
``Renormalized S_HE/Z_HE``             Replace :math:`\lambda_i\rightarrow \lambda_i/\Omega`
``omega``                              Norm of the 1TDM :math:`\Omega`, single-exc. character
``QTa`` / ``QT2``                      Sum over absolute (:math:`Q^t_a`) or squared (:math:`Q^t_2`) transition charges as measure for ionic character :cite:`Monte2023`
``LOC`` / ``LOCa``                     Local contributions: Trace of the :math:`\Omega` matrix with respect to basis functions (LOC) or squareroots of the values (LOCa)
``<Phe>``                              Expec. value of the particle-hole permutation operator, measuring de-excitations :cite:`Kimber2020`
``Trans. dipole moment [D]``           Transition dipole moment (and its Cartesian components)
``Transition <r^2> [a.u.]``            Transition matrix element of :math:`x^2+y^2+z^2` (and its Cartesian components)
``<r_h> [Ang]``                        Mean position of hole :math:`\langle\vec{x}_h\rangle_{\text{exc}}` :cite:`Plasser2015`
``<r_e> [Ang]``                        Mean position of electron :math:`\langle\vec{x}_e\rangle_{\text{exc}}`
``|<r_e - r_h>| [Ang]``                Linear e/h distance :math:`\vec{d}_{h\rightarrow e} = \langle\vec{x}_e - \vec{x}_h\rangle_{\text{exc}}`
``Hole size [Ang]``                    RMS hole size: :math:`\sigma_h = (\langle\vec{x}_h^2\rangle_{\text{exc}} - \langle\vec{x}_h\rangle_{\text{exc}}^2)^{1/2}`
``Electron size [Ang]``                RMS electron size: :math:`\sigma_e = (\langle\vec{x}_e^2\rangle_{\text{exc}} - \langle\vec{x}_e\rangle_{\text{exc}}^2)^{1/2}`
``RMS electron-hole separation [Ang]`` :math:`d_{\text{exc}} = (\langle \left|\vec{x}_e - \vec{x}_h\right|^2\rangle_{\text{exc}})^{1/2}` :cite:`Bappler2014`
``Covariance(r_h, r_e) [Ang^2]``       :math:`\text{COV}\left(\vec{x}_h,\vec{x}_e\right) = \langle\vec{x}_h\cdot\vec{x}_e\rangle_{\text{exc}} -
                                       \langle\vec{x}_h\rangle_{\text{exc}}\cdot\langle\vec{x}_e\rangle_{\text{exc}}`
``Correlation coefficient``            :math:`R_{eh} = \text{COV}\left(\vec{x}_h,\vec{x}_e\right)/\sigma_h\cdot\sigma_e` :cite:`Plasser2015`
``Center-of-mass size``                :math:`(\langle \left|\vec{x}_e + \vec{x}_h\right|^2\rangle_{\text{exc}}-\langle \vec{x}_e + \vec{x}_h\rangle_{\text{exc}}^2)^{1/2}`
====================================== =============================================================================================================================

.. xmldoc:: </MODULE>