1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
.. index::
single: Program; WFA
single: WFA
.. _UG\:sec\:wfa:
:program:`wfa`
================
.. warning::
This program requires a submodule.
.. only:: html
.. contents::
:local:
:backlinks: none
.. xmldoc:: <MODULE NAME="WFA">
%%Description:
<HELP>
The WFA program of the molcas program system provides various
visual and quantitative wavefunction analysis methods.
</HELP>
The :program:`WFA` program of the |molcas| program system provides various
visual and quantitative wavefunction analysis methods.
It is based on the libwfa :cite:`libwfa,libwfa2022` wavefunction analysis library.
The interface to |molcas| is described in Ref. :cite:`Molcas_libwfa`.
.. Quantitative analysis methods are printed to the standard output, orbital coefficients are
written to the HDF5 file that is used for input and output, and input files
for the external TheoDORE program are created.
The program computes natural transition
orbitals (NTO) :cite:`Martin2003,Plasser2014`, which provide a compact description of
one-electron excited states. Natural difference orbitals (NDO) :cite:`Plasser2014` can be
computed to visualize many-body effects and orbital relaxation effects :cite:`Plasser2014b`. A module for the
statistical analysis of exciton wavefunctions is included :cite:`Bappler2014,Plasser2015`,
which provides various quantitative descriptors to describe the excited states.
Output is printed for the 1-electron transition density matrix (1TDM) and for the 1-electron difference density matrix (1DDM).
A decomposition into local and charge transfer contributions on different chromophores
is possible through the charge transfer number analysis :cite:`Plasser2012`,
which has been integrated into |molcas| recently.
Postprocessing is possible through the external `TheoDORE <https://theodore-qc.sourceforge.net/>`_ :cite:`TheoDORE` program.
:program:`WFA` supports full use of spatial symmetry and can analyse transitions between
different spin multiplicities and particle numbers.
Installation
------------
The :program:`WFA` module is currently not installed by default.
Its installation occurs via CMake.
It requires a working HDF5 installation (including C++ bindings) and access to the include files of the Armadillo C++ linear algebra library.
In the current settings, external BLAS/LAPACK libraries have to be used.
Use, e.g., the following commands for installation: ::
FC=ifort cmake -D LINALG=MKL -D WFA=ON -D ARMADILLO_INC=../armadillo-7.300.0/include ..
To obtain the required libraries, you can use on Ubuntu: ::
sudo apt install libhdf5-dev libhdf5-cpp-103
Alternatively, you can link against the dynamic HDF5 libraries distributed
along with `Anaconda <https://www.anaconda.com/>`_.
.. _UG\:sec\:wfa_dependencies:
Dependencies
------------
The :program:`WFA` program requires HDF5 files, which are written by either
:program:`SCF`, :program:`RASSCF`, or :program:`RASSI`. In the case of :program:`RASSI`,
the :kword:`TDM` (or :kword:`TRD1`) keyword has to be activated.
.. _UG\:sec\:wfa_files:
Files
-----
Input files
...........
.. class:: filelist
:file:`WFAH5`
All information that the :program:`WFA` program needs is contained in this HDF5 file.
The name can be adjusted with the :kword:`H5FIle` option.
Output files
............
.. class:: filelist
:file:`WFAH5`
The orbital coefficients of NOs, NTOs, and NDOs are written to the same HDF5 file that
is also used for input.
:file:`*.om`
These are input files for the external TheoDORE program.
:file:`OmFrag.txt`
Input file for TheoDORE.
For a seamless interface to TheoDORE, you can also create the :file:`tden_summ.txt` file via ::
grep '^|' molcas.log > tden_summ.txt
The NOs, NTOs, and NDOs on the HDF5 file can be accessed via `Pegamoid <https://pypi.org/project/Pegamoid/>`_.
Alternatively, the orbitals can be converted to Molden format via the `Molpy program <https://github.com/felixplasser/molpy>`_. Call, e.g.: ::
penny molcas.rassi.h5 --wfaorbs molden
.. _UG\:sec\:wfa_input:
Input
-----
The input for the :program:`WFA` module is preceded by: ::
&WFA
Keywords
........
Basic Keywords:
.. class:: keywordlist
:kword:`H5FIle`
Specifies the name of the HDF5 file used for reading and writing
(e.g. :file:`$Project.scf.h5`, :file:`$Project.rasscf.h5`, :file:`$Project.rassi.h5`).
You either have to use this option or rename the file of
interest to :file:`WFAH5`.
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="H5FILE" APPEAR="HDF5 file" KIND="STRING" LEVEL="BASIC">
%%Keyword:H5FIle <basic>
<HELP>
Specifies the name of the HDF5 file used for reading and writing
(e.g. $Project.scf.h5, $Project.rasscf.h5, $Project.rassi.h5).
You either have to use this option or rename the file of
interest to WFAH5.
</HELP>
</KEYWORD>
:kword:`WFALevel`
Select how much output is produced (0-4, default: 3).
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="WFALEVEL" APPEAR="Print level" KIND="CHOICE" LIST="0,1,2,3,4" LEVEL="BASIC" DEFAULT_VALUE="3">
%%Keyword:WFALevel <basic>
<HELP>
Select how much output is produced (0-4, default: 3).
</HELP>
</KEYWORD>
:kword:`CTNUmmode`
Specifies what properties are computed in a `TheoDORE <https://theodore-qc.sourceforge.net/>`_-style fragment-based analysis (0-3, default: 1).
This requires defining fragments via :kword:`ATLIsts`.
0 --- none
1 --- Basic: POS, PR, DEL, CT, CTnt
2 --- Extended: POS, POSi, POSf, PR, PRi, PRf, DEL, COH, CT, CTnt
3 --- For transition metal complexes: POSi, POSf, PR, CT, MC, LC, MLCT, LMCT, LLCT
The definition of the descriptors is provided
`here <https://sourceforge.net/p/theodore-qc/wiki/Transition%20density%20matrix%20analysis/attachment/Om_desc.pdf>`_.
For a more fine-grained input use :kword:`PROPlist`.
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="CTNUMMODE" APPEAR="Computed properties" KIND="CHOICE" LIST="0: None,1: Basic,2: Extended,3: Metal complexes" LEVEL="BASIC" DEFAULT_VALUE="1" REQUIRE="ATLISTS">
%%Keyword:CTNUmmode <basic>
<HELP>
Define what properties are computed in a TheoDORE-style analysis. (0-3, default: 1).
</HELP>
</KEYWORD>
:kword:`ATLIsts`
Define the fragments in a `TheoDORE <https://theodore-qc.sourceforge.net/>`_-style analysis.
*Note:* If symmetry is turned on, then |molcas| may reorder the atoms.
In this case it is essential to take the order |molcas| produced (seen for example in the Molden files).
The first entry is the number of fragments.
Then enter the atomic indices of the fragment followed by a \*.
Example: ::
ATLISTS
2
1 2 4 *
3 *
*Note:* This input can be generated automatically via TheoDORE by suppling a file with
coordinates coord.mol and running ::
theodore theoinp -a coord.mol
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="ATLISTS" APPEAR="Fragment definition" KIND="CUSTOM" LEVEL="BASIC">
%%Keyword:ATLIsts <basic>
<HELP>
Define the fragments in a TheoDORE-style analysis.
</HELP>
</KEYWORD>
:kword:`REFState`
Index of the reference state for 1TDM and 1DDM analysis (default: 1).
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="REFSTATE" APPEAR="Reference state" KIND="INT" LEVEL="BASIC" DEFAULT_VALUE="1">
%%Keyword:REFState <basic>
<HELP>
Index of the reference state for 1TDM and 1DDM analysis.
</HELP>
</KEYWORD>
Advanced keywords for fine grain output options and debug information:
.. class:: keywordlist
:kword:`MULLiken`
Activate Mulliken population analysis (also for CT numbers).
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="MULLIKEN" APPEAR="Mulliken population analysis" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword:MULLiken <advanced>
<HELP>
Activate Mulliken population analysis.
</HELP>
</KEYWORD>
:kword:`LOWDin`
Activate Löwdin population analysis (also for CT numbers).
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="LOWDIN" APPEAR="Lowdin population analysis" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword:LOWDin <advanced>
<HELP>
Activate Lowdin population analysis.
</HELP>
</KEYWORD>
:kword:`NXO`
Activate NO, NTO, and NDO analysis.
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="NXO" APPEAR="NXO analysis" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword:NXO <advanced>
<HELP>
Activate NO, NTO, and NDO analysis.
</HELP>
</KEYWORD>
:kword:`EXCIton`
Activate exciton and multipole analysis.
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="EXCITON" APPEAR="Exciton analysis" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword:EXCIton <advanced>
<HELP>
Activate exciton and multipole analysis.
</HELP>
</KEYWORD>
:kword:`DOCTnumbers`
Activate charge transfer number analysis and creation of :file:`*.om` files.
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="DOCTNUMBERS" APPEAR="Charge transfer numbers" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword:DOCTnumbers <advanced>
<HELP>
Activate charge transfer number analysis and creation of *.om files.
</HELP>
</KEYWORD>
:kword:`H5ORbitals`
Print the NOs, NTOs, and/or NDOs to the HDF file.
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="H5ORBITALS" APPEAR="Save orbitals in HDF5" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword:H5ORbitals <advanced>
<HELP>
Print the NOs, NTOs, and/or NDOs to the HDF file.
</HELP>
</KEYWORD>
:kword:`PROPlist`
Manual input of properties to be printed out in a `TheoDORE <https://theodore-qc.sourceforge.net/>`_-style fragment based analysis.
Use only if :kword:`CTNUMMODE` does not provide what you want.
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="PROPLIST" APPEAR="Property list" KIND="CUSTOM" LEVEL="ADVANCED">
%%Keyword:PROPlist <advanced>
<HELP>
Manual input of properties to be printed out in a TheoDORE-style analysis.
</HELP>
</KEYWORD>
Enter as a list followed by a \*, e.g. ::
PROPLIST
Om POS PR CT COH CTnt *
The full list of descriptors is provided
`here <https://sourceforge.net/p/theodore-qc/wiki/Transition%20density%20matrix%20analysis/attachment/Om_desc.pdf>`_.
:kword:`DEBUg`
Print debug information.
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="DEBUG" APPEAR="Print debug information" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword:DEBUg <advanced>
<HELP>
Print debug information.
</HELP>
</KEYWORD>
:kword:`ADDInfo`
Add info for verification runs with :command:`pymolcas verify`.
.. xmldoc:: <KEYWORD MODULE="WFA" NAME="ADDINFO" APPEAR="Add info" KIND="SINGLE" LEVEL="ADVANCED">
%%Keyword:ADDInfo <advanced>
<HELP>
Add info for verifications runs with molcas verify.
</HELP>
</KEYWORD>
Input example
.............
::
* Analysis of SCF job
&SCF
&WFA
H5file = $Project.scf.h5
::
* Analysis of RASSCF job
* Reduced output
&RASSCF
&WFA
H5file = $Project.rasscf.h5
wfalevel = 1
::
* Analysis of RASSI job, use the TDM keyword
&RASSI
EJOB
TDM
&WFA
H5file = $Project.rassi.h5
ATLISTS
2
1 2 4 *
3 *
Large jobs
..........
The computational effort spent in :program:`RASSI` and the size of the file :file:`$Project.rassi.h5` scale with the square of the number of states included in the computation.
This can be a severe bottleneck.
To reduce the time spent in :program:`RASSI` use the :kword:`HEFF` or :kword:`EJOB` keywords;
these will cause RASSI to read in the Hamiltonian rather than recomputing it.
To reduce the output to the file :file:`$Project.rassi.h5` use :kword:`SUBSets = 1`.
Note that this only works if the reference state is the first state treated by RASSI
(and that is always possible if the states are reordered appropriately via :kword:`NROF`).
::
&RASSI
TDM
EJOB
SUBSets = 1
&WFA
H5file = $Project.rassi.h5
REFState = 1
Subsequently you may reduce the file size by repacking the HDF5 file: ::
h5repack -f GZIP=5 $Project.rassi.h5 $Project.rassi-repack.h5 && rm $Project.rassi.h5
Alternatively, you can avoid the quadratic scaling in :program:`RASSI` by processing states in batches specified via the :kword:`NROF` keyword.
As an extreme example, you can iterate over individual states using the following input
(here the 10 states of `JOB002` are analysed using the first state of `JOB001` as reference):
::
>> FOREACH IST in (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
&RASSI
TDM
NROF
2 1 1
1
$IST
>> COPY $Project.rassi.h5 $Project.rassi.$IST.h5
&WFA
h5file=$Project.rassi.$IST.h5
>> ENDDO
.. _UG\:sec\:wfa_output:
Output
------
State/difference density matrix analysis (:program:`SCF`/:program:`RASSCF`/:program:`RASSI`)
............................................................................................
.. compound::
::
RASSCF analysis for state 2 (3) A
or ::
RASSI analysis for state S1
.. _tab\:wfa_dm:
================================= =========================================================================================
Descriptor Explanation
================================= =========================================================================================
``n_u`` Number of unpaired electrons :math:`n_u=\sum_i\min(n_i, 2-n_i)` :cite:`Head-Gordon2003,Plasser2014`
``n_u,nl`` Number of unpaired electrons :math:`n_{u,nl}=\sum_i n_i^2(2-n_i)^2`
``PR_NO`` NO participation ratio :math:`\text{PR}_{\text{NO}}`
``p_D`` and ``p_A`` Promotion number :math:`p_D` and :math:`p_A`
``PR_D`` and ``PR_A`` D/A participation ratio :math:`\text{PR}_D` and :math:`\text{PR}_A`
``Dipole moment [D]`` Dipole moment (and its Cartesian components)
``RMS size of the density [Ang]`` Root-mean-square size of the overall electron density
``<r_h> [Ang]`` Mean position of detachment density :math:`\vec{d}_D` :cite:`Plasser2015`
``<r_e> [Ang]`` Mean position of attachment density :math:`\vec{d}_A`
``|<r_e - r_h>| [Ang]`` Linear D/A distance :math:`\vec{d}_{D\rightarrow A} = \vec{d}_A - \vec{d}_D`
``Hole size [Ang]`` RMS size of detachment density :math:`\sigma_D`
``Electron size [Ang]`` RMS size of attachment density :math:`\sigma_A`
================================= =========================================================================================
Transition density matrix analysis (:program:`RASSI`)
.....................................................
::
RASSI analysis for transition from state 1 to 2 (S0-S1)
.. _tab\:wfa_tdm:
====================================== =============================================================================================================================
Output listing Explanation
====================================== =============================================================================================================================
``Leading SVs`` Largest NTO occupation numbers
``Sum of SVs (Omega)`` :math:`\Omega`, Sum of NTO occupation numbers
``PR_NTO`` NTO participation ratio :math:`\text{PR}_{\text{NTO}}` :cite:`Plasser2012`
``Entanglement entropy (S_HE)`` :math:`S_{H|E}=-\sum_i\lambda_i\log_2\lambda_i` :cite:`Plasser2016`
``Nr of entangled states (Z_HE)`` :math:`Z_{HE}=2^{S_{H|E}}`
``Renormalized S_HE/Z_HE`` Replace :math:`\lambda_i\rightarrow \lambda_i/\Omega`
``omega`` Norm of the 1TDM :math:`\Omega`, single-exc. character
``QTa`` / ``QT2`` Sum over absolute (:math:`Q^t_a`) or squared (:math:`Q^t_2`) transition charges as measure for ionic character :cite:`Monte2023`
``LOC`` / ``LOCa`` Local contributions: Trace of the :math:`\Omega` matrix with respect to basis functions (LOC) or squareroots of the values (LOCa)
``<Phe>`` Expec. value of the particle-hole permutation operator, measuring de-excitations :cite:`Kimber2020`
``Trans. dipole moment [D]`` Transition dipole moment (and its Cartesian components)
``Transition <r^2> [a.u.]`` Transition matrix element of :math:`x^2+y^2+z^2` (and its Cartesian components)
``<r_h> [Ang]`` Mean position of hole :math:`\langle\vec{x}_h\rangle_{\text{exc}}` :cite:`Plasser2015`
``<r_e> [Ang]`` Mean position of electron :math:`\langle\vec{x}_e\rangle_{\text{exc}}`
``|<r_e - r_h>| [Ang]`` Linear e/h distance :math:`\vec{d}_{h\rightarrow e} = \langle\vec{x}_e - \vec{x}_h\rangle_{\text{exc}}`
``Hole size [Ang]`` RMS hole size: :math:`\sigma_h = (\langle\vec{x}_h^2\rangle_{\text{exc}} - \langle\vec{x}_h\rangle_{\text{exc}}^2)^{1/2}`
``Electron size [Ang]`` RMS electron size: :math:`\sigma_e = (\langle\vec{x}_e^2\rangle_{\text{exc}} - \langle\vec{x}_e\rangle_{\text{exc}}^2)^{1/2}`
``RMS electron-hole separation [Ang]`` :math:`d_{\text{exc}} = (\langle \left|\vec{x}_e - \vec{x}_h\right|^2\rangle_{\text{exc}})^{1/2}` :cite:`Bappler2014`
``Covariance(r_h, r_e) [Ang^2]`` :math:`\text{COV}\left(\vec{x}_h,\vec{x}_e\right) = \langle\vec{x}_h\cdot\vec{x}_e\rangle_{\text{exc}} -
\langle\vec{x}_h\rangle_{\text{exc}}\cdot\langle\vec{x}_e\rangle_{\text{exc}}`
``Correlation coefficient`` :math:`R_{eh} = \text{COV}\left(\vec{x}_h,\vec{x}_e\right)/\sigma_h\cdot\sigma_e` :cite:`Plasser2015`
``Center-of-mass size`` :math:`(\langle \left|\vec{x}_e + \vec{x}_h\right|^2\rangle_{\text{exc}}-\langle \vec{x}_e + \vec{x}_h\rangle_{\text{exc}}^2)^{1/2}`
====================================== =============================================================================================================================
.. xmldoc:: </MODULE>
|