1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
*-------------------------------------------------------------------------------
* Molecule: Ethylene (C2H4)
* Basis: ANO-L-VDZP
* Symmetry: d2h
* Features tested: SEWARD(CONVENTIONAL),SCF,MBPT2(FC),ALASKA(NUMERICAL)
* Responsible person: Victor P. Vysotskiy
* Comments: SP calculation of numerical gradients at the MBPT2(FC)/ANO-L-VDZP
* level of theory. The MBPT2(FC) optimized geometry is used. Thus,
* computed gradients must be negligible small (virtually zero) and
* 'slapaf' must report that the geometry is already converged.
*-------------------------------------------------------------------------------
>> export MOLCAS_PRINT=VERBOSE
>>export MOLCAS_NOCHECK=POTNUC
&SEWARD &END
Title
Ethylene, ANO-L-VDZP basis set
NoPack
Symmetry
X Y Z
Basis set
H.ANO-L-VDZP
H 0.93807933 -1.24442493 0.00000000 Angstrom
End of basis
Basis set
C.ANO-L-VDZP
C 0.00000000 -0.67683806 0.00000000 Angstrom
End of basis
NoCD
End of input
*-------------------------------------------------------------------------------
&SCF &END
Title
Ethylene, ANO-L-VDZP basis set
ITERATIONS
20, 20
Occupied
3 1 2 1 1 0 0 0
THREsholds
1.0d-10 1.0d-6 0.5d-7 0.2d-5
End of input
*-------------------------------------------------------------------------------
&MBPT2 &END
Frozen
1 0 1 0 0 0 0 0
End of input
*-------------------------------------------------------------------------------
&ALASKA
Numerical
Show
*-------------------------------------------------------------------------------
&SLAPAF
Iterations
1
>>FILE checkfile
* This file is autogenerated:
* Molcas version 20.10-241-g70ed4f8b
* Linux otis 4.15.0-1073-oem #83-Ubuntu SMP Mon Feb 17 11:21:18 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux
* Fri Nov 27 18:01:51 2020
*
#>> 1
#> SEWARD_MLTPL1X="1.949454778652"/5
#> SEWARD_KINETIC="0.597523564112"/5
#> SEWARD_ATTRACT="-8.344373599367"/5
#>> 2
#> SCF_ITER="11"/8
#> E_SCF="-78.053396769272"/8
#> MLTPL__0="-0.000000000000"/5
#> MLTPL__1[0]="0.0"/5
#> MLTPL__1[1]="0.0"/5
#> MLTPL__1[2]="0.0"/5
#> MLTPL__2[0]="1.399461236491"/5
#> MLTPL__2[1]="0.0"/5
#> MLTPL__2[2]="0.0"/5
#> MLTPL__2[3]="1.792528569484"/5
#> MLTPL__2[4]="0.0"/5
#> MLTPL__2[5]="-3.191989805975"/5
#>> 3
#> E_MP2="-78.321868480516"/8
#> HF_REF_WEIGHT="0.903684429532"/8
#>> 4
#> GRAD[0]="0.000003244596"/6
#> GRAD[1]="-0.000004226363"/6
#> GRAD[2]="0.0"/6
#> GRAD[3]="0.0"/6
#> GRAD[4]="0.000050250195"/6
#> GRAD[5]="0.0"/6
#>> 5
#>> 6
#> GEO_ITER="1"/8
#> SEWARD_MLTPL1X="1.949457788043"/5
#> SEWARD_KINETIC="0.597523470981"/5
#> SEWARD_ATTRACT="-8.344370044883"/5
#> SCF_ITER="6"/8
#> E_SCF="-78.053395131491"/8
#> MLTPL__0="-0.000000000000"/5
#> MLTPL__1[0]="0.0"/5
#> MLTPL__1[1]="0.0"/5
#> MLTPL__1[2]="0.0"/5
#> MLTPL__2[0]="1.399566305608"/5
#> MLTPL__2[1]="0.0"/5
#> MLTPL__2[2]="0.0"/5
#> MLTPL__2[3]="1.792554615663"/5
#> MLTPL__2[4]="0.0"/5
#> MLTPL__2[5]="-3.192120921271"/5
#> E_MP2="-78.321868478893"/8
#> HF_REF_WEIGHT="0.903682969109"/8
#>> 7
>>EOF
|