1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
>>> Do While <<<
&SEWARD &END
Symmetry
X Y
XBAS
C.sto-3g....
O.sto-3g....
H.sto-3g....
End of basis
ZMAT
C1
O2 1 1.300
H3a 1 1.100 2 121.0
*H3b 1 1.100 2 121.0 3 180.000
NoCD
End of input
&SCF &END
End of
&SLAPAF &END
CtoF
RHH = Bond H3a H3a(X)
Iterations
25
End of input
>>> EndDo <<<
>>FILE checkfile
* This file is autogenerated:
* Molcas version 23.02-249-g27432d173
* Linux lucifer 5.15.0-69-generic #76~20.04.1-Ubuntu SMP Mon Mar 20 15:54:19 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux
* Tue Apr 18 12:38:08 2023
*
#>> 1
#> POTNUC="29.641152427872"/6
#> SEWARD_MLTPL1X="0.071855488659"/5
#> SEWARD_KINETIC="15.891121812396"/5
#> SEWARD_ATTRACT="-37.871356737137"/5
#>> 2
#> SCF_ITER="11"/8
#> E_SCF="-112.342329848670"/8
#> MLTPL__0="-0.000000000000"/5
#> MLTPL__1[0]="0.0"/5
#> MLTPL__1[1]="0.0"/5
#> MLTPL__1[2]="-0.644819387971"/5
#> MLTPL__2[0]="0.171260265294"/5
#> MLTPL__2[1]="0.0"/5
#> MLTPL__2[2]="0.0"/5
#> MLTPL__2[3]="0.152576145014"/5
#> MLTPL__2[4]="0.0"/5
#> MLTPL__2[5]="-0.323836410308"/5
#>> 3
#> GRAD[0]="-0.140738336116"/6
#> GRAD[1]="0.138943944950"/6
#> GRAD[2]="0.004184629899"/6
#> GRAD[3]="0.000897195583"/6
#>> 4
#>> 5
#>> 7
#> POTNUC="31.078832962702"/6
#> SEWARD_MLTPL1X="0.071855488659"/5
#> SEWARD_KINETIC="15.891121812396"/5
#> SEWARD_ATTRACT="-38.090201469020"/5
#>> 8
#> SCF_ITER="8"/8
#> E_SCF="-112.354304343629"/8
#> MLTPL__0="-0.000000000000"/5
#> MLTPL__1[0]="0.0"/5
#> MLTPL__1[1]="0.0"/5
#> MLTPL__1[2]="-0.604428220948"/5
#> MLTPL__2[0]="0.174072854309"/5
#> MLTPL__2[1]="0.0"/5
#> MLTPL__2[2]="0.0"/5
#> MLTPL__2[3]="0.283950355322"/5
#> MLTPL__2[4]="0.0"/5
#> MLTPL__2[5]="-0.458023209632"/5
#>> 9
#> GRAD[0]="-0.006386155657"/6
#> GRAD[1]="0.001855065749"/6
#> GRAD[2]="0.000260518027"/6
#> GRAD[3]="0.002265544954"/6
#>> 10
#>> 11
#>> 13
#> POTNUC="31.091665940039"/6
#> SEWARD_MLTPL1X="0.071855488659"/5
#> SEWARD_KINETIC="15.891121812396"/5
#> SEWARD_ATTRACT="-38.093491559487"/5
#>> 14
#> SCF_ITER="7"/8
#> E_SCF="-112.354346348773"/8
#> MLTPL__0="-0.000000000000"/5
#> MLTPL__1[0]="0.0"/5
#> MLTPL__1[1]="0.0"/5
#> MLTPL__1[2]="-0.604519944995"/5
#> MLTPL__2[0]="0.154540007927"/5
#> MLTPL__2[1]="0.0"/5
#> MLTPL__2[2]="0.0"/5
#> MLTPL__2[3]="0.288689959976"/5
#> MLTPL__2[4]="0.0"/5
#> MLTPL__2[5]="-0.443229967902"/5
#>> 15
#> GRAD[0]="-0.000733940776"/6
#> GRAD[1]="-0.000058709385"/6
#> GRAD[2]="-0.000372674655"/6
#> GRAD[3]="0.000396325081"/6
#>> 16
#>> 17
#>> 19
#> POTNUC="31.087369458676"/6
#> SEWARD_MLTPL1X="0.071855488659"/5
#> SEWARD_KINETIC="15.891121812396"/5
#> SEWARD_ATTRACT="-38.093060729825"/5
#>> 20
#> SCF_ITER="5"/8
#> E_SCF="-112.354347138881"/8
#> MLTPL__0="-0.000000000000"/5
#> MLTPL__1[0]="0.0"/5
#> MLTPL__1[1]="0.0"/5
#> MLTPL__1[2]="-0.604657517396"/5
#> MLTPL__2[0]="0.153671824706"/5
#> MLTPL__2[1]="0.0"/5
#> MLTPL__2[2]="0.0"/5
#> MLTPL__2[3]="0.288567179959"/5
#> MLTPL__2[4]="0.0"/5
#> MLTPL__2[5]="-0.442239004665"/5
#>> 21
#> GRAD[0]="-0.000039080137"/6
#> GRAD[1]="0.000010349604"/6
#> GRAD[2]="-0.000029051732"/6
#> GRAD[3]="0.000014365267"/6
#>> 22
#> GEO_ITER="4"/8
#> POTNUC="31.087270047867"/6
#> SEWARD_MLTPL1X="0.071855488659"/5
#> SEWARD_KINETIC="15.891121812396"/5
#> SEWARD_ATTRACT="-38.093052507064"/5
#> SCF_ITER="2"/8
#> E_SCF="-112.354347141647"/8
#> MLTPL__0="-0.000000000000"/5
#> MLTPL__1[0]="0.0"/5
#> MLTPL__1[1]="0.0"/5
#> MLTPL__1[2]="-0.604649448160"/5
#> MLTPL__2[0]="0.153751026932"/5
#> MLTPL__2[1]="0.0"/5
#> MLTPL__2[2]="0.0"/5
#> MLTPL__2[3]="0.288547943118"/5
#> MLTPL__2[4]="0.0"/5
#> MLTPL__2[5]="-0.442298970051"/5
#>> 23
#>> 24
>>EOF
|