1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
* Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2006 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2006 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2006 The Regents of the University of California.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "ompi/datatype/datatype.h"
#include "ompi/datatype/convertor.h"
#include "ompi/datatype/datatype_internal.h"
#ifdef HAVE_ALLOCA_H
#include <alloca.h>
#endif
#include <stdlib.h>
int ompi_convertor_create_stack_with_pos_general( ompi_convertor_t* pConvertor,
size_t starting_point,
const size_t* sizes );
static inline size_t
ompi_convertor_compute_remote_size( const ompi_datatype_t* pData, const size_t* sizes )
{
uint32_t i;
size_t length = 0;
for( i = DT_CHAR; i < DT_MAX_PREDEFINED; i++ ) {
length += (pData->btypes[i] * sizes[i]);
}
return length;
}
int ompi_convertor_create_stack_with_pos_general( ompi_convertor_t* pConvertor,
size_t starting_point, const size_t* sizes )
{
dt_stack_t* pStack; /* pointer to the position on the stack */
int pos_desc; /* actual position in the description of the derived datatype */
size_t lastLength = 0;
const ompi_datatype_t* pData = pConvertor->pDesc;
size_t loop_length, *remoteLength, remote_size;
size_t resting_place = starting_point;
dt_elem_desc_t* pElems;
uint32_t count;
assert( 0 != starting_point );
assert( pConvertor->bConverted != starting_point );
assert( starting_point <=(pConvertor->count * pData->size) );
/*opal_output( 0, "Data extent %d size %d count %d total_size %d starting_point %d\n",
pData->ub - pData->lb, pData->size, pConvertor->count,
pConvertor->local_size, starting_point );*/
pConvertor->stack_pos = 0;
pStack = pConvertor->pStack;
/* Fill the first position on the stack. This one correspond to the
* last fake DT_END_LOOP that we add to the data representation and
* allow us to move quickly inside the datatype when we have a count.
*/
pElems = pConvertor->use_desc->desc;
if( (pConvertor->flags & CONVERTOR_HOMOGENEOUS) && (pData->flags & DT_FLAG_CONTIGUOUS) ) {
/* Special case for contiguous datatypes */
int32_t cnt = (int32_t)(starting_point / pData->size);
ptrdiff_t extent = pData->ub - pData->lb;
loop_length = GET_FIRST_NON_LOOP( pElems );
pStack[0].disp = pElems[loop_length].elem.disp;
pStack[0].type = DT_LOOP;
pStack[0].count = pConvertor->count - cnt;
cnt = (int32_t)(starting_point - cnt * pData->size); /* number of bytes after the loop */
pStack[1].index = 0;
pStack[1].type = DT_BYTE;
pStack[1].disp = pStack[0].disp;
pStack[1].count = pData->size - cnt;
if( (ptrdiff_t)pData->size == extent ) { /* all elements are contiguous */
pStack[1].disp += starting_point;
} else { /* each is contiguous but there are gaps inbetween */
pStack[1].disp += (pConvertor->count - pStack[0].count) * extent + cnt;
}
pConvertor->bConverted = starting_point;
pConvertor->stack_pos = 1;
return OMPI_SUCCESS;
}
/* remove from the main loop all the complete datatypes */
remote_size = ompi_convertor_compute_remote_size( pData, sizes );
count = (int32_t)(starting_point / remote_size);
resting_place -= (remote_size * count);
pStack->count = pConvertor->count - count;
pStack->index = -1;
loop_length = GET_FIRST_NON_LOOP( pElems );
pStack->disp = count * (pData->ub - pData->lb) + pElems[loop_length].elem.disp;
pos_desc = 0;
remoteLength = (size_t*)alloca( sizeof(size_t) * (pConvertor->pDesc->btypes[DT_LOOP] + 1));
remoteLength[0] = 0; /* initial value set to ZERO */
loop_length = 0;
/* The only way to get out of this loop is when we reach the desired position or
* when we finish the whole datatype.
*/
while( pos_desc < (int32_t)pConvertor->use_desc->used ) {
if( DT_END_LOOP == pElems->elem.common.type ) { /* end of the current loop */
ddt_endloop_desc_t* end_loop = (ddt_endloop_desc_t*)pElems;
ptrdiff_t extent;
if( (loop_length * pStack->count) > resting_place ) {
/* We will stop somewhere on this loop. To avoid moving inside the loop
* multiple times, we can compute the index of the loop where we will
* stop. Once this index is computed we can then reparse the loop once
* until we find the correct position.
*/
int32_t cnt = (int32_t)(resting_place / loop_length);
if( pStack->index == -1 ) {
extent = pData->ub - pData->lb;
} else {
assert( DT_LOOP == (pElems - end_loop->items)->loop.common.type );
extent = ((ddt_loop_desc_t*)(pElems - end_loop->items))->extent;
}
pStack->count -= (cnt + 1);
resting_place -= cnt * loop_length;
pStack->disp += (cnt + 1) * extent;
/* reset the remoteLength as we act as restarting the last loop */
pos_desc -= (end_loop->items - 1); /* go back to the first element in the loop */
pElems -= (end_loop->items - 1);
remoteLength[pConvertor->stack_pos] = 0;
loop_length = 0;
continue;
}
/* Not in this loop. Cleanup the stack and advance to the
* next data description.
*/
resting_place -= (loop_length * (pStack->count - 1)); /* update the resting place */
pStack--;
pConvertor->stack_pos--;
pos_desc++;
pElems++;
remoteLength[pConvertor->stack_pos] += (loop_length * pStack->count);
loop_length = remoteLength[pConvertor->stack_pos];
continue;
}
if( DT_LOOP == pElems->elem.common.type ) {
remoteLength[pConvertor->stack_pos] += loop_length;
PUSH_STACK( pStack, pConvertor->stack_pos, pos_desc, DT_LOOP,
pElems->loop.loops, pStack->disp );
pos_desc++;
pElems++;
remoteLength[pConvertor->stack_pos] = 0;
loop_length = 0; /* starting a new loop */
}
while( pElems->elem.common.flags & DT_FLAG_DATA ) {
/* now here we have a basic datatype */
const ompi_datatype_t* basic_type = BASIC_DDT_FROM_ELEM( (*pElems) );
lastLength = pElems->elem.count * basic_type->size;
if( resting_place < lastLength ) {
int32_t cnt = (int32_t)(resting_place / basic_type->size);
loop_length += (cnt * basic_type->size);
resting_place -= (cnt * basic_type->size);
PUSH_STACK( pStack, pConvertor->stack_pos, pos_desc, pElems->elem.common.type,
pElems->elem.count - cnt,
pElems->elem.disp + cnt * pElems->elem.extent );
pConvertor->bConverted = starting_point - resting_place;
DDT_DUMP_STACK( pConvertor->pStack, pConvertor->stack_pos,
pConvertor->pDesc->desc.desc, pConvertor->pDesc->name );
return OMPI_SUCCESS;
}
loop_length += lastLength;
resting_place -= lastLength;
pos_desc++; /* advance to the next data */
pElems++;
}
}
/* Correctly update the bConverted field */
pConvertor->flags |= CONVERTOR_COMPLETED;
pConvertor->bConverted = pConvertor->local_size;
return OMPI_SUCCESS;
}
|