| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 
 | /* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
 * Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
 *                         University Research and Technology
 *                         Corporation.  All rights reserved.
 * Copyright (c) 2004-2007 The University of Tennessee and The University
 *                         of Tennessee Research Foundation.  All rights
 *                         reserved.
 * Copyright (c) 2004-2007 High Performance Computing Center Stuttgart, 
 *                         University of Stuttgart.  All rights reserved.
 * Copyright (c) 2004-2005 The Regents of the University of California.
 *                         All rights reserved.
 * Copyright (c) 2008      UT-Battelle, LLC
 * Copyright (c) 2008-2009 Cisco Systems, Inc.  All rights reserved.
 * Copyright (c) 2009      Sun Microsystems, Inc.  All rights reserved.
 * $COPYRIGHT$
 * 
 * Additional copyrights may follow
 * 
 * $HEADER$
 */
/**
 * @file
 *
 * Public interface for the MPI_Op handle.
 */
#ifndef OMPI_OP_H
#define OMPI_OP_H
#include "ompi_config.h"
#include "mpi.h"
#include "ompi/datatype/datatype.h"
#include "opal/class/opal_object.h"
#include "ompi/mpi/f77/fint_2_int.h"
#include <stdio.h>
#if defined(c_plusplus) || defined(__cplusplus)
extern "C" {
#endif
/**
 * Fortran handles; must be [manually set to be] equivalent to the
 * values in mpif.h.
 */
enum {
  OMPI_OP_FORTRAN_NULL = 0,
  /**< Corresponds to Fortran MPI_OP_NULL */
  OMPI_OP_FORTRAN_MAX,
  /**< Corresponds to Fortran MPI_MAX */
  OMPI_OP_FORTRAN_MIN,
  /**< Corresponds to Fortran MPI_MIN */
  OMPI_OP_FORTRAN_SUM,
  /**< Corresponds to Fortran MPI_SUM */
  OMPI_OP_FORTRAN_PROD,
  /**< Corresponds to Fortran MPI_PROD */
  OMPI_OP_FORTRAN_LAND,
  /**< Corresponds to Fortran MPI_LAND */
  OMPI_OP_FORTRAN_BAND,
  /**< Corresponds to Fortran MPI_BAND */
  OMPI_OP_FORTRAN_LOR,
  /**< Corresponds to Fortran MPI_LOR */
  OMPI_OP_FORTRAN_BOR,
  /**< Corresponds to Fortran MPI_BOR */
  OMPI_OP_FORTRAN_LXOR,
  /**< Corresponds to Fortran MPI_LXOR */
  OMPI_OP_FORTRAN_BXOR,
  /**< Corresponds to Fortran MPI_BXOR */
  OMPI_OP_FORTRAN_MAXLOC,
  /**< Corresponds to Fortran MPI_MAXLOC */
  OMPI_OP_FORTRAN_MINLOC,
  /**< Corresponds to Fortran MPI_MINLOC */
  OMPI_OP_FORTRAN_REPLACE,
  /**< Corresponds to Fortran MPI_REPLACE */
  OMPI_OP_FORTRAN_MAX_TYPE
  /**< Maximum value */
};
/**
 * Corresponding to the types that we can reduce over.  See
 * MPI-1:4.9.2, p114-115 and
 * MPI-2:4.15, p76-77
 */
enum {
  OMPI_OP_TYPE_UNSIGNED_CHAR,
  /**< C integer: unsigned char */
  OMPI_OP_TYPE_SIGNED_CHAR,
  /**< C integer: signed char */
  OMPI_OP_TYPE_INT,
  /**< C integer: int */
  OMPI_OP_TYPE_LONG,
  /**< C integer: long */
  OMPI_OP_TYPE_SHORT,
  /**< C integer: short */
  OMPI_OP_TYPE_UNSIGNED_SHORT,
  /**< C integer: unsigned short */
  OMPI_OP_TYPE_UNSIGNED,
  /**< C integer: unsigned */
  OMPI_OP_TYPE_UNSIGNED_LONG,
  /**< C integer: unsigned long */
  OMPI_OP_TYPE_LONG_LONG_INT,
  /**< C integer: long long int (optional) */
  OMPI_OP_TYPE_UNSIGNED_LONG_LONG,
  /**< C integer: unsigned long long (optional) */
  OMPI_OP_TYPE_INTEGER,
  /**< Fortran integer */
  OMPI_OP_TYPE_INTEGER1,
  /**< Fortran integer*1 */
  OMPI_OP_TYPE_INTEGER2,
  /**< Fortran integer*2 */
  OMPI_OP_TYPE_INTEGER4,
  /**< Fortran integer*4 */
  OMPI_OP_TYPE_INTEGER8,
  /**< Fortran integer*8 */
  OMPI_OP_TYPE_INTEGER16,
  /**< Fortran integer*16 */
  OMPI_OP_TYPE_FLOAT,
  /**< Floating point: float */
  OMPI_OP_TYPE_DOUBLE,
  /**< Floating point: double */
  OMPI_OP_TYPE_REAL,
  /**< Floating point: real */
  OMPI_OP_TYPE_REAL2,
  /**< Floating point: real*2 */
  OMPI_OP_TYPE_REAL4,
  /**< Floating point: real*4 */
  OMPI_OP_TYPE_REAL8,
  /**< Floating point: real*8 */
  OMPI_OP_TYPE_REAL16,
  /**< Floating point: real*16 */
  OMPI_OP_TYPE_DOUBLE_PRECISION,
  /**< Floating point: double precision */
  OMPI_OP_TYPE_LONG_DOUBLE,
  /**< Floating point: long double */
  OMPI_OP_TYPE_LOGICAL,
  /**< Logical */
  OMPI_OP_TYPE_BOOL,
  /**< Bool */
  OMPI_OP_TYPE_COMPLEX,
  /**< Complex */
  OMPI_OP_TYPE_DOUBLE_COMPLEX,
  /**< Double complex */
  OMPI_OP_TYPE_COMPLEX8,
  /**< Complex8 */
  OMPI_OP_TYPE_COMPLEX16,
  /**< Complex16 */
  OMPI_OP_TYPE_COMPLEX32,
  /**< Complex32 */
  OMPI_OP_TYPE_BYTE,
  /**< Byte */
  OMPI_OP_TYPE_2REAL,
  /**< 2 location Fortran: 2 real */
  OMPI_OP_TYPE_2DOUBLE_PRECISION,
  /**< 2 location Fortran: 2 double precision */
  OMPI_OP_TYPE_2INTEGER,
  /**< 2 location Fortran: 2 integer */
  OMPI_OP_TYPE_FLOAT_INT,
  /**< 2 location C: float int */
  OMPI_OP_TYPE_DOUBLE_INT,
  /**< 2 location C: double int */
  OMPI_OP_TYPE_LONG_INT,
  /**< 2 location C: long int */
  OMPI_OP_TYPE_2INT,
  /**< 2 location C: int int */
  OMPI_OP_TYPE_SHORT_INT,
  /**< 2 location C: short int */
  OMPI_OP_TYPE_LONG_DOUBLE_INT,
  /**< 2 location C: long double int */
  OMPI_OP_TYPE_WCHAR,
  /**< 2 location C: wchar_t */
  OMPI_OP_TYPE_MAX
  /**< Maximum type */
};
/**
 * Typedef for C op functions.  
 *
 * We don't use MPI_User_function because this would create a
 * confusing dependency loop between this file and mpi.h.  So this is
 * repeated code, but it's better this way (and this typedef will
 * never change, so there's not much of a maintenance worry).
 */
typedef void (ompi_op_c_handler_fn_t)(void *, void *, int *, MPI_Datatype *);
/*
 *  Three buffer ( two input and one output) function prototype
 */
typedef void (ompi_op_3buff_c_handler_fn_t)(void * restrict , void * restrict, 
        void * restrict, int *, MPI_Datatype *);
/**
 * Typedef for fortran op functions.
 */
typedef void (ompi_op_fortran_handler_fn_t)(void *, void *, 
                                            MPI_Fint *, MPI_Fint *);
/*
 * Three buffer (2 input one output) function prototype
 */
typedef void (ompi_op_3buff_fortran_handler_fn_t)(void * restrict, 
        void * restrict , void * restrict , MPI_Fint *, MPI_Fint *);
/**
 * Typedef for C++ op functions intercept.
 *
 * See the lengthy explanation for why this is different than the C
 * intercept in ompi/mpi/cxx/intercepts.cc in the
 * ompi_mpi_cxx_op_intercept() function.
 */
typedef void (ompi_op_cxx_handler_fn_t)(void *, void *, int *, 
                                        MPI_Datatype *, MPI_User_function *op);
/*
 * Three buffer (two input, one output) function prototype
 */
typedef void (ompi_op_3buff_cxx_handler_fn_t)(void * restrict, void * restrict,
        void * restrict, int *, MPI_Datatype *, MPI_User_function *op);
/*
 * Flags for MPI_Op
 */
/** Set if the MPI_Op is a built-in operation */
#define OMPI_OP_FLAGS_INTRINSIC    0x0001
/** Set if the callback function is in Fortran */
#define OMPI_OP_FLAGS_FORTRAN_FUNC 0x0002
/** Set if the callback function is in C++ */
#define OMPI_OP_FLAGS_CXX_FUNC     0x0004
/** Set if the callback function is associative (MAX and SUM will both
    have ASSOC set -- in fact, it will only *not* be set if we
    implement some extensions to MPI, because MPI says that all
    MPI_Op's should be associative, so this flag is really here for
    future expansion) */
#define OMPI_OP_FLAGS_ASSOC        0x0008
/** Set if the callback function is associative for floating point
    operands (e.g., MPI_SUM will have ASSOC set, but will *not* have
    FLOAT_ASSOC set)  */
#define OMPI_OP_FLAGS_FLOAT_ASSOC  0x0010
/** Set if the callback function is communative */
#define OMPI_OP_FLAGS_COMMUTE      0x0020
/**
 * Back-end type of MPI_Op
 */
struct ompi_op_t {
  opal_object_t super;
  /**< Parent class, for reference counting */
  char o_name[MPI_MAX_OBJECT_NAME];
  /**< Name, for debugging purposes */
  uint32_t o_flags;
  /**< Flags about the op */
  union {
      /** C handler function pointer */
      ompi_op_c_handler_fn_t *c_fn;
      /** Fortran handler function pointer */
      ompi_op_fortran_handler_fn_t *fort_fn;
      /** C++ intercept function pointer -- see lengthy comment in
          ompi/mpi/cxx/intercepts.cc::ompi_mpi_cxx_op_intercept() for
          an explanation */
      ompi_op_cxx_handler_fn_t *cxx_intercept_fn;
  } o_func[OMPI_OP_TYPE_MAX];
  /**< Array of function pointers, indexed on the operation type.  For
       non-intrinsice MPI_Op's, only the 0th element will be
       meaningful. */
  /** Index in Fortran <-> C translation array */
  int o_f_to_c_index;
  union {
      /** C handler function pointer */
      ompi_op_3buff_c_handler_fn_t *c_fn;
      /** Fortran handler function pointer */
      ompi_op_3buff_fortran_handler_fn_t *fort_fn;
      /** C++ intercept function pointer -- see lengthy comment in
          ompi/mpi/cxx/intercepts.cc::ompi_mpi_cxx_op_intercept() for
          an explanation */
      ompi_op_3buff_cxx_handler_fn_t *cxx_intercept_fn;
  } o_3buff_func[OMPI_OP_TYPE_MAX];
  /**< Array of three buffer function pointers, indexed on the operation 
    type.  For non-intrinsice MPI_Op's, only the 0th element will be
    meaningful. */
};
/**
 * Convenience typedef 
 */
typedef struct ompi_op_t ompi_op_t;
OMPI_DECLSPEC OBJ_CLASS_DECLARATION(ompi_op_t);
/**
 * Padded struct to maintain back compatibiltiy.
 * See ompi/communicator/communicator.h comments with struct ompi_communicator_t
 * for full explanation why we chose the following padding construct for predefines.
 */
#define PREDEFINED_OP_PAD (sizeof(void*) * 256)
struct ompi_predefined_op_t {
    struct ompi_op_t op;
    char padding[PREDEFINED_OP_PAD - sizeof(ompi_op_t)];
};
typedef struct ompi_predefined_op_t ompi_predefined_op_t;
/**
 * Array to map ddt->id values to the corresponding position in the op
 * function array.
 *
 * NOTE: It is possible to have an implementation without this map.
 * There are basically 3 choices for implementing "how to find the
 * right position in the op array based on the datatype":
 *
 * 1. Use the exact same ordering as ddt->id in the op map.  This is
 * nice in that it's always a direct lookup via one memory
 * de-reference.  But it makes a sparse op array, and it's at least
 * somewhat wasteful.  It also chains the ddt and op implementations
 * together.  If the ddt ever changes its ordering, op is screwed.  It
 * seemed safer from a maintenance point of view not to do it that
 * way.
 *
 * 2. Re-arrange the ddt ID values so that all the reducable types are
 * at the beginning.  This means that we can have a dense array here
 * in op, but then we have the same problem as number one -- and so
 * this didn't seem like a good idea from a maintenance point of view.
 *
 * 3. Create a mapping between the ddt->id values and the position in
 * the op array.  This allows a nice dense op array, and if we make
 * the map based on symbolic values, then if ddt ever changes its
 * ordering, it won't matter to op.  This seemed like the safest thing
 * to do from a maintenance perspective, and since it only costs one
 * extra lookup, and that lookup is way cheaper than the function call
 * to invoke the reduction operation, it seemed like the best idea.
 */
OMPI_DECLSPEC extern int ompi_op_ddt_map[DT_MAX_PREDEFINED];
/**
 * Global variable for MPI_OP_NULL
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_null;
/**
 * Global variable for MPI_MAX
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_max;
/**
 * Global variable for MPI_MIN
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_min;
/**
 * Global variable for MPI_SUM
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_sum;
/**
 * Global variable for MPI_PROD
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_prod;
/**
 * Global variable for MPI_LAND
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_land;
/**
 * Global variable for MPI_BAND
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_band;
/**
 * Global variable for MPI_LOR
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_lor;
/**
 * Global variable for MPI_BOR
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_bor;
/**
 * Global variable for MPI_LXOR
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_lxor;
/**
 * Global variable for MPI_BXOR
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_bxor;
/**
 * Global variable for MPI_MAXLOC
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_maxloc;
/**
 * Global variable for MPI_MINLOC
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_minloc;
/**
 * Global variable for MPI_REPLACE
 */
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_replace;
/**
 * Table for Fortran <-> C op handle conversion
 */
extern struct opal_pointer_array_t *ompi_op_f_to_c_table;
/**
 * Initialize the op interface.
 *
 * @returns OMPI_SUCCESS Upon success
 * @returns OMPI_ERROR Otherwise
 *
 * Invoked from ompi_mpi_init(); sets up the op interface, creates
 * the predefined MPI operations, and creates the corresopnding F2C
 * translation table.
 */
int ompi_op_init(void);
/**
 * Finalize the op interface.
 *
 * @returns OMPI_SUCCESS Always
 *
 * Invokes from ompi_mpi_finalize(); tears down the op interface, and
 * destroys the F2C translation table.
 */
int ompi_op_finalize(void);
/**
 * Create a ompi_op_t
 *
 * @param commute Boolean indicating whether the operation is
 *        communative or not
 * @param func Function pointer of the error handler
 *
 * @returns op Pointer to the ompi_op_t that will be
 *   created and returned
 *
 * This function is called as the back-end of all the MPI_OP_CREATE
 * functions.  It creates a new ompi_op_t object, initializes it to
 * the correct object type, and sets the callback function on it.
 *
 * The type of the function pointer is (arbitrarily) the fortran
 * function handler type.  Since this function has to accept 2
 * different function pointer types (lest we have 2 different
 * functions to create errhandlers), the fortran one was picked
 * arbitrarily.  Note that (void*) is not sufficient because at
 * least theoretically, a sizeof(void*) may not necessarily be the
 * same as sizeof(void(*)).
 *
 * NOTE: It *always* sets the "fortran" flag to false.  The Fortran
 * wrapper for MPI_OP_CREATE is expected to reset this flag to true
 * manually.
 */
ompi_op_t *ompi_op_create(bool commute, ompi_op_fortran_handler_fn_t *func);
/**
 * Mark an MPI_Op as holding a C++ callback function, and cache
 * that function in the MPI_Op.  See a lenghty comment in
 * ompi/mpi/cxx/op.c::ompi_mpi_cxx_op_intercept() for a full
 * expalantion.
 */
OMPI_DECLSPEC void ompi_op_set_cxx_callback(ompi_op_t *op, MPI_User_function *fn);
/**
 * Check to see if an op is intrinsic.
 *
 * @param op The op to check
 *
 * @returns true If the op is intrinsic
 * @returns false If the op is not intrinsic
 *
 * Self-explanitory.  This is needed in a few top-level MPI functions;
 * this function is provided to hide the internal structure field
 * names.
 */
static inline bool ompi_op_is_intrinsic(ompi_op_t *op)
{
  return (bool) (0 != (op->o_flags & OMPI_OP_FLAGS_INTRINSIC));
}
/**
 * Check to see if an op is communative or not
 *
 * @param op The op to check
 *
 * @returns true If the op is communative
 * @returns false If the op is not communative
 *
 * Self-explanitory.  This is needed in a few top-level MPI functions;
 * this function is provided to hide the internal structure field
 * names.
 */
static inline bool ompi_op_is_commute(ompi_op_t *op)
{
  return (bool) (0 != (op->o_flags & OMPI_OP_FLAGS_COMMUTE));
}
/**
 * Check to see if an op is floating point associative or not
 *
 * @param op The op to check
 *
 * @returns true If the op is floating point associative
 * @returns false If the op is not floating point associative
 *
 * Self-explanitory.  This is needed in a few top-level MPI functions;
 * this function is provided to hide the internal structure field
 * names.
 */
static inline bool ompi_op_is_float_assoc(ompi_op_t *op)
{
  return (bool) (0 != (op->o_flags & OMPI_OP_FLAGS_FLOAT_ASSOC));
}
/**
 * Check to see if an op is valid on a given datatype
 *
 * @param op The op to check
 * @param ddt The datatype to check
 *
 * @returns true If the op is valid on that datatype
 * @returns false If the op is not valid on that datatype
 *
 * Self-explanitory.  This is needed in a few top-level MPI functions;
 * this function is provided to hide the internal structure field
 * names.
 */
static inline bool ompi_op_is_valid(ompi_op_t *op, ompi_datatype_t *ddt,
                                    char **msg, const char *func)
{
    /* Check:
       - non-intrinsic ddt's cannot be invoked on intrinsic op's
       - if intrinsic ddt invoked on intrinsic op:
           - ensure the datatype is defined in the op map
           - ensure we have a function pointer for that combination
    */
    if (ompi_op_is_intrinsic(op)) {
        if (ompi_ddt_is_predefined(ddt)) {
            /* Intrinsic ddt on intrinsic op */
            if ((-1 == ompi_op_ddt_map[ddt->id] ||
                 (0 != (op->o_flags & OMPI_OP_FLAGS_FORTRAN_FUNC) &&
                  NULL == op->o_func[ompi_op_ddt_map[ddt->id]].fort_fn) ||
                 (0 == (op->o_flags & OMPI_OP_FLAGS_FORTRAN_FUNC) &&
                  NULL == op->o_func[ompi_op_ddt_map[ddt->id]].c_fn))) {
                asprintf(msg, "%s: the reduction operation %s is not defined on the %s datatype",
                         func, op->o_name, ddt->name);
                return false;
            }
        } else {
            /* Non-intrinsic ddt on intrinsic op */
            if ('\0' != ddt->name[0]) {
                asprintf(msg, "%s: the reduction operation %s is not defined for non-intrinsic datatypes (attempted with datatype named \"%s\")",
                         func, op->o_name, ddt->name);
            } else {
                asprintf(msg, "%s: the reduction operation %s is not defined for non-intrinsic datatypes",
                         func, op->o_name);
            }
            return false;
        }
    }
    /* All other cases ok */
    return true;
}
/**
 * Perform a reduction operation.
 *
 * @param op The operation (IN)
 * @param source Source (input) buffer (IN)
 * @param target Target (output) buffer (IN/OUT)
 * @param count Number of elements (IN)
 * @param dtype MPI datatype (IN)
 *
 * @returns void As with MPI user-defined reduction functions, there
 * is no return code from this function.
 *
 * Perform a reduction operation with count elements of type dtype in
 * the buffers source and target.  The target buffer obtains the
 * result (i.e., the original values in the target buffer are reduced
 * with the values in the source buffer and the result is stored in
 * the target buffer).
 *
 * This function figures out which reduction operation function to
 * invoke and whether to invoke it with C- or Fortran-style invocation
 * methods.  If the op is intrinsic and has the operation defined for
 * dtype, the appropriate back-end function will be invoked.
 * Otherwise, the op is assumed to be a user op and the first function
 * pointer in the op array will be used.
 *
 * NOTE: This function assumes that a correct combination will be
 * given to it; it makes no provision for errors (in the name of
 * optimization).  If you give it an intrinsic op with a datatype that
 * is not defined to have that operation, it is likely to seg fault.
 */
static inline void ompi_op_reduce(ompi_op_t *op, void *source, void *target,
                                  int count, ompi_datatype_t *dtype)
{
  MPI_Fint f_dtype, f_count;
  /*
   * Call the reduction function.  Two dimensions: a) if both the op
   * and the datatype are intrinsic, we have a series of predefined
   * functions for each datatype, b) if the op has a fortran callback
   * function or not.
   *
   * NOTE: We assume here that we will get a valid result back from
   * the ompi_op_ddt_map[] (and not -1) -- if we do, then the
   * parameter check in the top-level MPI function should have caught
   * it.  If we get -1 because the top-level parameter check is turned
   * off, then it's an erroneous program and it's the user's fault.
   * :-)
   */
  if (0 != (op->o_flags & OMPI_OP_FLAGS_INTRINSIC) &&
     ompi_ddt_is_predefined(dtype)) {
    if (0 != (op->o_flags & OMPI_OP_FLAGS_FORTRAN_FUNC)) {
      f_dtype = OMPI_INT_2_FINT(dtype->d_f_to_c_index);
      f_count = OMPI_INT_2_FINT(count);
      op->o_func[ompi_op_ddt_map[dtype->id]].fort_fn(source, target,
                                                     &f_count, &f_dtype);
    } else {
      op->o_func[ompi_op_ddt_map[dtype->id]].c_fn(source, target, &count,
                                                  &dtype);
    }
  } 
  /* User-defined function */
  else if (0 != (op->o_flags & OMPI_OP_FLAGS_FORTRAN_FUNC)) {
    f_dtype = OMPI_INT_2_FINT(dtype->d_f_to_c_index);
    f_count = OMPI_INT_2_FINT(count);
    op->o_func[0].fort_fn(source, target, &f_count, &f_dtype);
  } else if (0 != (op->o_flags & OMPI_OP_FLAGS_CXX_FUNC)) {
    op->o_func[0].cxx_intercept_fn(source, target, &count, &dtype,
                                   op->o_func[1].c_fn);
  } else {
    op->o_func[0].c_fn(source, target, &count, &dtype);
  }
}
/**
 * Perform a reduction operation.
 *
 * @param op The operation (IN)
 * @param source Source1 (input) buffer (IN)
 * @param source Source2 (input) buffer (IN)
 * @param target Target (output) buffer (IN/OUT)
 * @param count Number of elements (IN)
 * @param dtype MPI datatype (IN)
 *
 * @returns void As with MPI user-defined reduction functions, there
 * is no return code from this function.
 *
 * Perform a reduction operation with count elements of type dtype in
 * the buffers source and target.  The target buffer obtains the
 * result (i.e., the original values in the target buffer are reduced
 * with the values in the source buffer and the result is stored in
 * the target buffer).
 *
 * This function figures out which reduction operation function to
 * invoke and whether to invoke it with C- or Fortran-style invocation
 * methods.  If the op is intrinsic and has the operation defined for
 * dtype, the appropriate back-end function will be invoked.
 * Otherwise, the op is assumed to be a user op and the first function
 * pointer in the op array will be used.
 *
 * NOTE: This function assumes that a correct combination will be
 * given to it; it makes no provision for errors (in the name of
 * optimization).  If you give it an intrinsic op with a datatype that
 * is not defined to have that operation, it is likely to seg fault.
 */
static inline void ompi_3buff_op_reduce(ompi_op_t *op, void *source1, void *source2, 
        void *target, int count, ompi_datatype_t *dtype)
{
  MPI_Fint f_dtype, f_count;
  void * restrict src1;
  void * restrict src2;
  void * restrict tgt;
  src1=source1;
  src2=source2;
  tgt=target;
  /*
   * Call the reduction function.  Two dimensions: a) if both the op
   * and the datatype are intrinsic, we have a series of predefined
   * functions for each datatype, b) if the op has a fortran callback
   * function or not.
   *
   * NOTE: We assume here that we will get a valid result back from
   * the ompi_op_ddt_map[] (and not -1) -- if we do, then the
   * parameter check in the top-level MPI function should have caught
   * it.  If we get -1 because the top-level parameter check is turned
   * off, then it's an erroneous program and it's the user's fault.
   * :-)
   */
  if (0 != (op->o_flags & OMPI_OP_FLAGS_INTRINSIC) &&
     ompi_ddt_is_predefined(dtype)) {
    if (0 != (op->o_flags & OMPI_OP_FLAGS_FORTRAN_FUNC)) {
      f_dtype = OMPI_INT_2_FINT(dtype->d_f_to_c_index);
      f_count = OMPI_INT_2_FINT(count);
      op->o_3buff_func[ompi_op_ddt_map[dtype->id]].fort_fn(src1, src2 , tgt,
                                                     &f_count, &f_dtype);
    } else {
      op->o_3buff_func[ompi_op_ddt_map[dtype->id]].c_fn(src1, src2, tgt,&count,
                                                  &dtype);
    }
  } 
  /* User-defined function - this can't work, will never be called.
   *  need to take this out soon. */
  else if (0 != (op->o_flags & OMPI_OP_FLAGS_FORTRAN_FUNC)) {
    f_dtype = OMPI_INT_2_FINT(dtype->d_f_to_c_index);
    f_count = OMPI_INT_2_FINT(count);
    op->o_3buff_func[0].fort_fn(src1, src2, tgt, &f_count, &f_dtype);
  } else if (0 != (op->o_flags & OMPI_OP_FLAGS_CXX_FUNC)) {
    op->o_3buff_func[0].cxx_intercept_fn(src1, src2, tgt, &count, &dtype,
                                   op->o_func[1].c_fn);
  } else {
    op->o_3buff_func[0].c_fn(src1, src2, tgt, &count, &dtype);
  }
}
#if defined(c_plusplus) || defined(__cplusplus)
}
#endif
#endif /* OMPI_OP_H */
 |