1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
* Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2011 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2006 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2006 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2009 Oak Ridge National Labs. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "opal_config.h"
#include <stddef.h>
#include "opal/datatype/opal_convertor_internal.h"
#include "opal/datatype/opal_datatype_internal.h"
#if OPAL_ENABLE_DEBUG
#include "opal/util/output.h"
extern int opal_pack_debug;
#define DO_DEBUG(INST) if( opal_pack_debug ) { INST }
#else
#define DO_DEBUG(INST)
#endif /* OPAL_ENABLE_DEBUG */
#include "opal/datatype/opal_datatype_checksum.h"
#include "opal/datatype/opal_datatype_pack.h"
#include "opal/datatype/opal_datatype_prototypes.h"
#if defined(CHECKSUM)
#define opal_pack_homogeneous_contig_function opal_pack_homogeneous_contig_checksum
#define opal_pack_homogeneous_contig_with_gaps_function opal_pack_homogeneous_contig_with_gaps_checksum
#define opal_generic_simple_pack_function opal_generic_simple_pack_checksum
#else
#define opal_pack_homogeneous_contig_function opal_pack_homogeneous_contig
#define opal_pack_homogeneous_contig_with_gaps_function opal_pack_homogeneous_contig_with_gaps
#define opal_generic_simple_pack_function opal_generic_simple_pack
#endif /* defined(CHECKSUM) */
#define IOVEC_MEM_LIMIT 8192
/* the contig versions does not use the stack. They can easily retrieve
* the status with just the informations from pConvertor->bConverted.
*/
int32_t
opal_pack_homogeneous_contig_function( opal_convertor_t* pConv,
struct iovec* iov,
uint32_t* out_size,
size_t* max_data )
{
dt_stack_t* pStack = pConv->pStack;
unsigned char *source_base = NULL;
uint32_t iov_count;
size_t length = pConv->local_size - pConv->bConverted, initial_amount = pConv->bConverted;
OPAL_PTRDIFF_TYPE initial_displ = pConv->use_desc->desc[pConv->use_desc->used].end_loop.first_elem_disp;
source_base = (pConv->pBaseBuf + initial_displ + pStack[0].disp + pStack[1].disp);
/* There are some optimizations that can be done if the upper level
* does not provide a buffer.
*/
for( iov_count = 0; iov_count < (*out_size); iov_count++ ) {
if( 0 == length ) break;
if( (size_t)iov[iov_count].iov_len > length )
iov[iov_count].iov_len = length;
if( iov[iov_count].iov_base == NULL ) {
iov[iov_count].iov_base = (IOVBASE_TYPE *) source_base;
COMPUTE_CSUM( iov[iov_count].iov_base, iov[iov_count].iov_len, pConv );
} else {
/* contiguous data just memcpy the smallest data in the user buffer */
OPAL_DATATYPE_SAFEGUARD_POINTER( source_base, iov[iov_count].iov_len,
pConv->pBaseBuf, pConv->pDesc, pConv->count );
MEMCPY_CSUM( iov[iov_count].iov_base, source_base, iov[iov_count].iov_len, pConv );
}
length -= iov[iov_count].iov_len;
pConv->bConverted += iov[iov_count].iov_len;
pStack[0].disp += iov[iov_count].iov_len;
source_base += iov[iov_count].iov_len;
}
/* update the return value */
*max_data = pConv->bConverted - initial_amount;
*out_size = iov_count;
if( pConv->bConverted == pConv->local_size ) {
pConv->flags |= CONVERTOR_COMPLETED;
return 1;
}
return 0;
}
int32_t
opal_pack_homogeneous_contig_with_gaps_function( opal_convertor_t* pConv,
struct iovec* iov,
uint32_t* out_size,
size_t* max_data )
{
const opal_datatype_t* pData = pConv->pDesc;
dt_stack_t* pStack = pConv->pStack;
unsigned char *user_memory, *packed_buffer;
uint32_t i, index, iov_count;
size_t max_allowed, total_bytes_converted = 0;
OPAL_PTRDIFF_TYPE extent;
OPAL_PTRDIFF_TYPE initial_displ = pConv->use_desc->desc[pConv->use_desc->used].end_loop.first_elem_disp;
extent = pData->ub - pData->lb;
assert( (pData->flags & OPAL_DATATYPE_FLAG_CONTIGUOUS) && ((OPAL_PTRDIFF_TYPE)pData->size != extent) );
/* Limit the amount of packed data to the data left over on this convertor */
max_allowed = pConv->local_size - pConv->bConverted;
if( max_allowed > (*max_data) )
max_allowed = (*max_data);
i = (uint32_t)(pConv->bConverted / pData->size); /* how many we already pack */
/* There are some optimizations that can be done if the upper level
* does not provide a buffer.
*/
user_memory = pConv->pBaseBuf + initial_displ + pStack[0].disp + pStack[1].disp;
for( iov_count = 0; iov_count < (*out_size); iov_count++ ) {
if( 0 == max_allowed ) break; /* we're done this time */
if( iov[iov_count].iov_base == NULL ) {
/* special case for small data. We avoid allocating memory if we
* can fill the iovec directly with the address of the remaining
* data.
*/
if( (uint32_t)pStack->count < ((*out_size) - iov_count) ) {
pStack[1].count = pData->size - (pConv->bConverted % pData->size);
for( index = iov_count; i < pConv->count; i++, index++ ) {
iov[index].iov_base = (IOVBASE_TYPE *) user_memory;
iov[index].iov_len = pStack[1].count;
pStack[0].disp += extent;
total_bytes_converted += pStack[1].count;
pStack[1].disp = 0; /* reset it for the next round */
pStack[1].count = pData->size;
user_memory = pConv->pBaseBuf + initial_displ + pStack[0].disp;
COMPUTE_CSUM( iov[index].iov_base, iov[index].iov_len, pConv );
}
*out_size = iov_count + index;
pConv->bConverted += total_bytes_converted;
*max_data = total_bytes_converted;
pConv->flags |= CONVERTOR_COMPLETED;
return 1; /* we're done */
}
/* now special case for big contiguous data with gaps around */
if( pData->size >= IOVEC_MEM_LIMIT ) {
/* as we dont have to copy any data, we can simply fill the iovecs
* with data from the user data description.
*/
for( index = iov_count; (i < pConv->count) && (index < (*out_size));
i++, index++ ) {
if( max_allowed < pData->size ) {
iov[index].iov_base = (IOVBASE_TYPE *) user_memory;
iov[index].iov_len = max_allowed;
max_allowed = 0;
COMPUTE_CSUM( iov[index].iov_base, iov[index].iov_len, pConv );
break;
} else {
iov[index].iov_base = (IOVBASE_TYPE *) user_memory;
iov[index].iov_len = pData->size;
user_memory += extent;
COMPUTE_CSUM( iov[index].iov_base, (size_t)iov[index].iov_len, pConv );
}
max_allowed -= iov[index].iov_len;
total_bytes_converted += iov[index].iov_len;
}
*out_size = index;
*max_data = total_bytes_converted;
pConv->bConverted += total_bytes_converted;
if( pConv->bConverted == pConv->local_size ) {
pConv->flags |= CONVERTOR_COMPLETED;
return 1;
}
return 0;
}
}
{
uint32_t counter;
size_t done;
packed_buffer = (unsigned char *) iov[iov_count].iov_base;
done = pConv->bConverted - i * pData->size; /* partial data from last pack */
/* data left from last round and enough space in the buffer */
if( (done + max_allowed) >= pData->size ) {
/* copy the partial left-over from the previous round */
done = pData->size - done;
OPAL_DATATYPE_SAFEGUARD_POINTER( user_memory, done, pConv->pBaseBuf, pData, pConv->count );
MEMCPY_CSUM( packed_buffer, user_memory, done, pConv );
packed_buffer += done;
max_allowed -= done;
total_bytes_converted += done;
user_memory += (extent - pData->size + done);
/* copy entire types */
counter = (uint32_t)(max_allowed / pData->size);
if( counter > pConv->count ) counter = pConv->count;
for( i = 0; i < counter; i++ ) {
OPAL_DATATYPE_SAFEGUARD_POINTER( user_memory, pData->size, pConv->pBaseBuf, pData, pConv->count );
MEMCPY_CSUM( packed_buffer, user_memory, pData->size, pConv );
packed_buffer+= pData->size;
user_memory += extent;
}
done = (counter * pData->size);
max_allowed -= done;
total_bytes_converted += done;
}
/* If there is anything pending ... */
if( 0 != max_allowed ) {
done = max_allowed;
OPAL_DATATYPE_SAFEGUARD_POINTER( user_memory, done, pConv->pBaseBuf, pData, pConv->count );
MEMCPY_CSUM( packed_buffer, user_memory, done, pConv );
packed_buffer += done;
max_allowed = 0;
total_bytes_converted += done;
user_memory += done;
}
}
}
pStack[0].disp = (intptr_t)user_memory - (intptr_t)pConv->pBaseBuf - initial_displ;
pStack[1].disp = max_allowed;
*max_data = total_bytes_converted;
pConv->bConverted += total_bytes_converted;
*out_size = iov_count;
if( pConv->bConverted == pConv->local_size ) {
pConv->flags |= CONVERTOR_COMPLETED;
return 1;
}
return 0;
}
/* The pack/unpack functions need a cleanup. I have to create a proper interface to access
* all basic functionalities, hence using them as basic blocks for all conversion functions.
*
* But first let's make some global assumptions:
* - a datatype (with the flag DT_DATA set) will have the contiguous flags set if and only if
* the data is really contiguous (extent equal with size)
* - for the OPAL_DATATYPE_LOOP type the DT_CONTIGUOUS flag set means that the content of the loop is
* contiguous but with a gap in the begining or at the end.
* - the DT_CONTIGUOUS flag for the type OPAL_DATATYPE_END_LOOP is meaningless.
*/
int32_t
opal_generic_simple_pack_function( opal_convertor_t* pConvertor,
struct iovec* iov, uint32_t* out_size,
size_t* max_data )
{
dt_stack_t* pStack; /* pointer to the position on the stack */
uint32_t pos_desc; /* actual position in the description of the derived datatype */
uint32_t count_desc; /* the number of items already done in the actual pos_desc */
size_t total_packed = 0; /* total amount packed this time */
dt_elem_desc_t* description;
dt_elem_desc_t* pElem;
const opal_datatype_t *pData = pConvertor->pDesc;
unsigned char *source_base, *destination;
size_t iov_len_local;
uint32_t iov_count;
DO_DEBUG( opal_output( 0, "opal_convertor_generic_simple_pack( %p, {%p, %lu}, %d )\n", (void*)pConvertor,
iov[0].iov_base, (unsigned long)iov[0].iov_len, *out_size ); );
description = pConvertor->use_desc->desc;
/* For the first step we have to add both displacement to the source. After in the
* main while loop we will set back the source_base to the correct value. This is
* due to the fact that the convertor can stop in the middle of a data with a count
*/
pStack = pConvertor->pStack + pConvertor->stack_pos;
pos_desc = pStack->index;
source_base = pConvertor->pBaseBuf + pStack->disp;
count_desc = (uint32_t)pStack->count;
pStack--;
pConvertor->stack_pos--;
pElem = &(description[pos_desc]);
source_base += pStack->disp;
DO_DEBUG( opal_output( 0, "pack start pos_desc %d count_desc %d disp %ld\n"
"stack_pos %d pos_desc %d count_desc %d disp %ld\n",
pos_desc, count_desc, (long)(source_base - pConvertor->pBaseBuf),
pConvertor->stack_pos, pStack->index, (int)pStack->count, (long)pStack->disp ); );
for( iov_count = 0; iov_count < (*out_size); iov_count++ ) {
destination = (unsigned char *) iov[iov_count].iov_base;
iov_len_local = iov[iov_count].iov_len;
while( 1 ) {
while( pElem->elem.common.flags & OPAL_DATATYPE_FLAG_DATA ) {
/* now here we have a basic datatype */
PACK_PREDEFINED_DATATYPE( pConvertor, pElem, count_desc,
source_base, destination, iov_len_local );
if( 0 == count_desc ) { /* completed */
source_base = pConvertor->pBaseBuf + pStack->disp;
pos_desc++; /* advance to the next data */
UPDATE_INTERNAL_COUNTERS( description, pos_desc, pElem, count_desc );
continue;
}
goto complete_loop;
}
if( OPAL_DATATYPE_END_LOOP == pElem->elem.common.type ) { /* end of the current loop */
DO_DEBUG( opal_output( 0, "pack end_loop count %d stack_pos %d"
" pos_desc %d disp %ld space %lu\n",
(int)pStack->count, pConvertor->stack_pos,
pos_desc, (long)pStack->disp, (unsigned long)iov_len_local ); );
if( --(pStack->count) == 0 ) { /* end of loop */
if( pConvertor->stack_pos == 0 ) {
/* we lie about the size of the next element in order to
* make sure we exit the main loop.
*/
*out_size = iov_count;
goto complete_loop; /* completed */
}
pConvertor->stack_pos--;
pStack--;
pos_desc++;
} else {
pos_desc = pStack->index + 1;
if( pStack->index == -1 ) {
pStack->disp += (pData->ub - pData->lb);
} else {
assert( OPAL_DATATYPE_LOOP == description[pStack->index].loop.common.type );
pStack->disp += description[pStack->index].loop.extent;
}
}
source_base = pConvertor->pBaseBuf + pStack->disp;
UPDATE_INTERNAL_COUNTERS( description, pos_desc, pElem, count_desc );
DO_DEBUG( opal_output( 0, "pack new_loop count %d stack_pos %d pos_desc %d disp %ld space %lu\n",
(int)pStack->count, pConvertor->stack_pos, pos_desc, (long)pStack->disp, (unsigned long)iov_len_local ); );
}
if( OPAL_DATATYPE_LOOP == pElem->elem.common.type ) {
OPAL_PTRDIFF_TYPE local_disp = (OPAL_PTRDIFF_TYPE)source_base;
if( pElem->loop.common.flags & OPAL_DATATYPE_FLAG_CONTIGUOUS ) {
PACK_CONTIGUOUS_LOOP( pConvertor, pElem, count_desc,
source_base, destination, iov_len_local );
if( 0 == count_desc ) { /* completed */
pos_desc += pElem->loop.items + 1;
goto update_loop_description;
}
/* Save the stack with the correct last_count value. */
}
local_disp = (OPAL_PTRDIFF_TYPE)source_base - local_disp;
PUSH_STACK( pStack, pConvertor->stack_pos, pos_desc, OPAL_DATATYPE_LOOP, count_desc,
pStack->disp + local_disp);
pos_desc++;
update_loop_description: /* update the current state */
source_base = pConvertor->pBaseBuf + pStack->disp;
UPDATE_INTERNAL_COUNTERS( description, pos_desc, pElem, count_desc );
DDT_DUMP_STACK( pConvertor->pStack, pConvertor->stack_pos, pElem, "advance loop" );
continue;
}
}
complete_loop:
iov[iov_count].iov_len -= iov_len_local; /* update the amount of valid data */
total_packed += iov[iov_count].iov_len;
pConvertor->bConverted += iov[iov_count].iov_len; /* update the already converted bytes */
}
*max_data = total_packed;
*out_size = iov_count;
if( pConvertor->bConverted == pConvertor->local_size ) {
pConvertor->flags |= CONVERTOR_COMPLETED;
return 1;
}
/* I complete an element, next step I should go to the next one */
PUSH_STACK( pStack, pConvertor->stack_pos, pos_desc, OPAL_DATATYPE_INT8, count_desc,
source_base - pStack->disp - pConvertor->pBaseBuf );
DO_DEBUG( opal_output( 0, "pack save stack stack_pos %d pos_desc %d count_desc %d disp %ld\n",
pConvertor->stack_pos, pStack->index, (int)pStack->count, (long)pStack->disp ); );
return 0;
}
|