1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
/*
* Copyright (c) 2007-2008 Cisco Systems, Inc. All rights reserved.
*
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/**
* @file
*
* This interface is designed to hide the back-end details of how IB
* RC connections are made from the rest of the openib BTL. There are
* module-like instances of the implemented functionality (dlopen and
* friends are not used, but all the functionality is accessed through
* struct's of function pointers, so you can swap between multiple
* different implementations at run time, just like real components).
* Hence, these entities are referred to as "Connect
* Pseudo-Components" (CPCs).
*
* The CPCs are referenced by their names (e.g., "oob", "rdma_cm").
*
* CPCs are split into components and modules, similar to all other
* MCA frameworks in this code base.
*
* Before diving into the CPC interface, let's discuss some
* terminology and mappings of data structures:
*
* - a BTL module represents a network port (in the case of the openib
* BTL, a LID)
* - a CPC module represents one way to make connections to a BTL module
* - hence, a BTL module has potentially multiple CPC modules
* associated with it
* - an endpoint represnts a connection between a local BTL module and
* a remote BTL module (in the openib BTL, because of BSRQ, an
* endpoint can contain multiple QPs)
* - when an endpoint is created, one of the CPC modules associated
* with the local BTL is selected and associated with the endpoint
* (obviously, it is a CPC module that is common between the local
* and remote BTL modules)
* - endpoints may be created and destroyed during the MPI job
* - endpoints are created lazily, during the first communication
* between two peers
* - endpoints are destroyed when two MPI processes become
* disconnected (e.g., MPI-2 dynamics or MPI_FINALIZE)
* - hence, BTL modules and CPC modules outlive endpoints.
* Specifically, BTL modules and CPC modules live from MPI_INIT to
* MPI_FINALIZE. endpoints come and go as MPI semantics demand it.
* - therefore, CPC modules need to cache information on endpoints that
* are specific to that connection.
*
* Component interface:
*
* - component_register(): The openib BTL's component_open() function
* calls the connect_base_register() function, which scans all
* compiled-in CPC's. If they have component_register() functions,
* they are called (component_register() functions are only allowed to
* register MCA parameters).
*
* NOTE: The connect_base_register() function will process the
* btl_openib_cpc_include and btl_openib_cpc_exclude MCA parameters
* and automatically include/exclude CPCs as relevant. If a CPC is
* excluded, none of its other interface functions will be invoked for
* the duration of the process.
*
* - component_init(): The openib BTL's component_init() function
* calls connect_base_init(), which will invoke this query function on
* each CPC to see if it wants to run at all. CPCs can gracefully
* remove themselves from consideration in this process by returning
* OMPI_ERR_NOT_SUPPORTED.
*
* - component_query(): The openib BTL's init_one_port() calls the
* connect_base_select_for_local_port() function, which, for each LID
* on that port, calls the component_query() function on every
* available CPC on that LID. This function is intended to see if a
* CPC can run on a sepcific openib BTL module (i.e., LID). If it
* can, the CPC is supposed to create a CPC module that is specific to
* that BTL/LID and return it. If it cannot, it should return
* OMPI_ERR_NOT_SUPPORTED and be gracefully skipped for this
* OpenFabrics port.
*
* component_finalize(): The openib BTL's component_close() function
* calls connect_base_finalize(), which, in turn, calls the
* component_finalize() function on all available CPCs. Note that all
* CPC modules will have been finalized by this point; the CPC
* component_finalize() function is a chance for the CPC to clean up
* any component-specific resources.
*
* Module interface:
*
* cbm_component member: A pointer pointing to the single, global
* instance of the CPC component. This member is used for creating a
* unique index representing the modules' component so that it can be
* shared with remote peer processes.
*
* cbm_priority member: An integer between 0 and 100, inclusive,
* representing the priority of this CPC.
*
* cbm_modex_message member: A pointer to a blob buffer that will be
* included in the modex message for this port for this CPC (it is
* assumed that this blob is a) only understandable by the
* corresponding CPC in the peer process, and b) contains specific
* addressing/contact information for *this* port's CPC module).
*
* cbm_modex_message_len member: The length of the cbm_modex_message
* blob, in bytes.
*
* cbm_endpoint_init(): Called during endpoint creation, allowing a
* CPC module to cache information on the endpoint. A pointer to the
* endpoint's CPC module is already cached on the endpoint.
*
* cbm_start_connect(): initiate a connection to a remote peer. The
* CPC is responsible for setting itself up for asyncronous operation
* for progressing the outgoing connection request.
*
* cbm_endpoint_finalize(): Called during the endpoint destrouction,
* allowing the CPC module to destroy anything that it cached on the
* endpoint.
*
* cbm_finalize(): shut down all asynchronous handling and clean up
* any state that was setup for this CPC module/BTL. Some CPCs setup
* asynchronous support on a per-HCA/NIC basis (vs. per-port/LID). It
* is the reponsibility of the CPC to figure out such issues (e.g.,
* via reference counting) -- there is no notification from the
* upper-level BTL about when an entire HCA/NIC is no longer being
* used. There is only this function, which tells when a specific
* CPC/BTL module is no longer being used.
*
* cbm_uses_cts: a bool that indicates whether the CPC will use the
* CTS protocol or not.
* - if true: the CPC will post the fragment on
* endpoint->endpoint_cts_frag as a receive buffer and will *not*
* call ompi_btl_openib_post_recvs().
* - if false: the CPC will call ompi_btl_openib_post_recvs() before
* calling ompi_btl_openib_cpc_complete().
*
* There are two functions in the main openib BTL that the CPC may
* call:
*
* - ompi_btl_openib_post_recvs(endpoint): once a QP is locally
* connected to the remote side (but we don't know if the remote side
* is connected to us yet), this function is invoked to post buffers
* on the QP, setup credits for the endpoint, etc. This function is
* *only* invoked if the CPC's cbm_uses_cts is false.
*
* - ompi_btl_openib_cpc_complete(endpoint): once that a CPC knows
* that a QP is connected on *both* sides, this function is invoked to
* tell the main openib BTL "ok, you can use this connection now."
* (e.g., the main openib BTL will either invoke the CTS protocol or
* start sending out fragments that were queued while the connection
* was establishing, etc.).
*/
#ifndef BTL_OPENIB_CONNECT_H
#define BTL_OPENIB_CONNECT_H
BEGIN_C_DECLS
#define BCF_MAX_NAME 64
/**
* Must forward declare these structs to avoid include file loops.
*/
struct mca_btl_openib_hca_t;
struct mca_btl_openib_module_t;
struct mca_btl_base_endpoint_t;
/**
* This is struct is defined below
*/
struct ompi_btl_openib_connect_base_module_t;
/************************************************************************/
/**
* Function to register MCA params in the connect functions. It
* returns no value, so it cannot fail.
*/
typedef void (*ompi_btl_openib_connect_base_component_register_fn_t)(void);
/**
* This function is invoked once by the openib BTL component during
* startup. It is intended to have CPC component-wide startup.
*
* Return value:
*
* - OMPI_SUCCESS: this CPC component will be used in selection during
* this process.
*
* - OMPI_ERR_NOT_SUPPORTED: this CPC component will be silently
* ignored in this process.
*
* - Other OMPI_ERR_* values: the error will be propagated upwards,
* likely causing a fatal error (and/or the openib BTL component
* being ignored).
*/
typedef int (*ompi_btl_openib_connect_base_component_init_fn_t)(void);
/**
* Query the CPC to see if it wants to run on a specific port (i.e., a
* specific BTL module). If the component init function previously
* returned OMPI_SUCCESS, this function is invoked once per BTL module
* creation (i.e., for each port found by an MPI process). If this
* CPC wants to be used on this BTL module, it returns a CPC module
* that is specific to this BTL module.
*
* The BTL module in question is passed to the function; all of its
* attributes can be used to query to see if it's eligible for this
* CPC.
*
* If it is eligible, the CPC is responsible for creating a
* corresponding CPC module, filling in all the relevant fields on the
* modules, and for setting itself up to run (per above) and returning
* a CPC module (this is effectively the "module_init" function).
* Note that the module priority must be between 0 and 100
* (inclusive). When multiple CPCs are eligible for a single module,
* the CPC with the highest priority will be used.
*
* Return value:
*
* - OMPI_SUCCESS if this CPC is eligible for and was able to be setup
* for this BTL module. It is assumed that the CPC is now completely
* setup to run on this openib module (per description above).
*
* - OMPI_ERR_NOT_SUPPORTED if this CPC cannot support this BTL
* module. This is not an error; it's just the CPC saying "sorry, I
* cannot support this BTL module."
*
* - Other OMPI_ERR_* code: an error occurred.
*/
typedef int (*ompi_btl_openib_connect_base_func_component_query_t)
(struct mca_btl_openib_module_t *btl,
struct ompi_btl_openib_connect_base_module_t **cpc);
/**
* This function is invoked once by the openib BTL component during
* shutdown. It is intended to have CPC component-wide shutdown.
*/
typedef int (*ompi_btl_openib_connect_base_component_finalize_fn_t)(void);
/**
* CPC component struct
*/
struct ompi_btl_openib_connect_base_component_t {
/** Name of this set of connection functions */
char cbc_name[BCF_MAX_NAME];
/** Register function. Can be NULL. */
ompi_btl_openib_connect_base_component_register_fn_t cbc_register;
/** CPC component init function. Can be NULL. */
ompi_btl_openib_connect_base_component_init_fn_t cbc_init;
/** Query the CPC component to get a CPC module corresponding to
an openib BTL module. Cannot be NULL. */
ompi_btl_openib_connect_base_func_component_query_t cbc_query;
/** CPC component finalize function. Can be NULL. */
ompi_btl_openib_connect_base_component_finalize_fn_t cbc_finalize;
};
/**
* Convenience typedef
*/
typedef struct ompi_btl_openib_connect_base_component_t ompi_btl_openib_connect_base_component_t;
/************************************************************************/
/**
* Function called when an endpoint has been created and has been
* associated with a CPC.
*/
typedef int (*ompi_btl_openib_connect_base_module_endpoint_init_fn_t)
(struct mca_btl_base_endpoint_t *endpoint);
/**
* Function to initiate a connection to a remote process.
*/
typedef int (*ompi_btl_openib_connect_base_module_start_connect_fn_t)
(struct ompi_btl_openib_connect_base_module_t *cpc,
struct mca_btl_base_endpoint_t *endpoint);
/**
* Function called when an endpoint is being destroyed.
*/
typedef int (*ompi_btl_openib_connect_base_module_endpoint_finalize_fn_t)
(struct mca_btl_base_endpoint_t *endpoint);
/**
* Function to finalize the CPC module. It is called once when the
* CPC module's corresponding openib BTL module is being finalized.
*/
typedef int (*ompi_btl_openib_connect_base_module_finalize_fn_t)
(struct mca_btl_openib_module_t *btl,
struct ompi_btl_openib_connect_base_module_t *cpc);
/**
* Meta data about a CPC module. This is in a standalone struct
* because it is used in both the CPC module struct and the
* openib_btl_proc_t struct to hold information received from the
* modex.
*/
typedef struct ompi_btl_openib_connect_base_module_data_t {
/** Pointer back to the component. Used by the base and openib
btl to calculate this module's index for the modex. */
ompi_btl_openib_connect_base_component_t *cbm_component;
/** Priority of the CPC module (must be >=0 and <=100) */
uint8_t cbm_priority;
/** Blob that the CPC wants to include in the openib modex message
for a specific port, or NULL if the CPC does not want to
include a message in the modex. */
void *cbm_modex_message;
/** Length of the cbm_modex_message blob (0 if
cbm_modex_message==NULL). The message is intended to be short
(because the size of the modex broadcast is a function of
sum(cbm_modex_message_len[i]) for
i=(0...total_num_ports_in_MPI_job) -- e.g., IBCM imposes its
own [very short] limits (per IBTA volume 1, chapter 12). */
uint8_t cbm_modex_message_len;
} ompi_btl_openib_connect_base_module_data_t;
/**
* Struct for holding CPC module and associated meta data
*/
typedef struct ompi_btl_openib_connect_base_module_t {
/** Meta data about the module */
ompi_btl_openib_connect_base_module_data_t data;
/** Endpoint initialization function */
ompi_btl_openib_connect_base_module_endpoint_init_fn_t cbm_endpoint_init;
/** Connect function */
ompi_btl_openib_connect_base_module_start_connect_fn_t cbm_start_connect;
/** Endpoint finalization function */
ompi_btl_openib_connect_base_module_endpoint_finalize_fn_t cbm_endpoint_finalize;
/** Finalize the cpc module */
ompi_btl_openib_connect_base_module_finalize_fn_t cbm_finalize;
/** Whether this module will use the CTS protocol or not. This
directly states whether this module will call
mca_btl_openib_endpoint_post_recvs() or not: true = this
module will *not* call _post_recvs() and instead will post the
receive buffer provided at endpoint->endpoint_cts_frag on qp
0. */
bool cbm_uses_cts;
} ompi_btl_openib_connect_base_module_t;
END_C_DECLS
#endif
|