1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
/* ---------------------------------------------------------------- */
/* (C)Copyright IBM Corp. 2007, 2008 */
/* ---------------------------------------------------------------- */
/**
* \file ad_gpfs_tuning.c
* \brief Defines ad_gpfs performance tuning
*/
/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
* Copyright (C) 2008 University of Chicago.
* See COPYRIGHT notice in top-level directory.
*/
/*---------------------------------------------------------------------
* ad_gpfs_tuning.c
*
* defines global variables and functions for performance tuning and
* functional debugging.
*---------------------------------------------------------------------*/
#include "ad_gpfs_tuning.h"
#include "mpi.h"
#if !defined(PVFS2_SUPER_MAGIC)
#define PVFS2_SUPER_MAGIC (0x20030528)
#endif
int gpfsmpio_timing;
int gpfsmpio_timing2;
int gpfsmpio_timing_cw_level;
int gpfsmpio_comm;
int gpfsmpio_tunegather;
int gpfsmpio_tuneblocking;
long bglocklessmpio_f_type;
int gpfsmpio_bg_nagg_pset;
int gpfsmpio_pthreadio;
int gpfsmpio_p2pcontig;
int gpfsmpio_balancecontig;
int gpfsmpio_devnullio;
int gpfsmpio_bridgeringagg;
double gpfsmpio_prof_cw [GPFSMPIO_CIO_LAST+1];
double gpfsmpio_prof_cr [GPFSMPIO_CIO_LAST+1];
/* set internal variables for tuning environment variables */
/** \page mpiio_vars MPIIO Configuration
\section env_sec Environment Variables
* - GPFSMPIO_COMM - Define how data is exchanged on collective
* reads and writes. Possible values:
* - 0 - Use MPI_Alltoallv.
* - 1 - Use MPI_Isend/MPI_Irecv.
* - Default is 0.
*
* - GPFSMPIO_TIMING - collect timing breakdown for MPI I/O collective calls.
* Possible values:
* - 0 - Do not collect/report timing.
* - 1 - Collect/report timing.
* - Default is 0.
*
* - GPFSMPIO_TUNEGATHER - Tune how starting and ending offsets are communicated
* for aggregator collective i/o. Possible values:
* - 0 - Use two MPI_Allgather's to collect starting and ending offsets.
* - 1 - Use MPI_Allreduce(MPI_MAX) to collect starting and ending offsets.
* - Default is 1.
*
* - GPFSMPIO_TUNEBLOCKING - Tune how aggregate file domains are
* calculated (block size). Possible values:
* - 0 - Evenly calculate file domains across aggregators. Also use
* MPI_Isend/MPI_Irecv to exchange domain information.
* - 1 - Align file domains with the underlying file system's block size. Also use
* MPI_Alltoallv to exchange domain information.
* - Default is 1.
*
* - BGLOCKLESSMPIO_F_TYPE - Specify a filesystem type that should run
* the ad_bglockless driver. NOTE: Using romio prefixes (such as
* "bg:" or "bglockless:") on a file name will override this environment
* variable. Possible values:
* - 0xnnnnnnnn - Any valid file system type (or "magic number") from
* statfs() field f_type.
* - The default is 0x20030528 (PVFS2_SUPER_MAGIC)
*
* - GPFSMPIO_NAGG_PSET - Specify a ratio of "I/O aggregators" to use for each
* compute group (compute nodes + i/o nodes). Possible values:
* - any integer
* - Default is 8
*
* - GPFSMPIO_PTHREADIO - Enables a very simple form of asyncronous io where a
* pthread is spawned to do the posix writes while the main thread does the
* data aggregation - useful for large files where multiple rounds are
* required (more that the cb_buffer_size of data per aggregator). User
* must ensure there is hw resource available for the thread to run. I
* am sure there is a better way to do this involving comm threads - this is
* just a start. NOTE: For some reason the stats collected when this is
* enabled misses some of the data so the data sizes are off a bit - this is
* a statistical issue only, the data is still accurately written out
*
* - GPFSMPIO_P2PCONTIG - Does simple point-to-point communication between the
* aggregator and the procs that feed it. Performance could be enhanced by a
* one-sided put algorithm. Current implementation allows only 1 round of
* data. Useful/allowed only when:
* 1.) The datatype is contiguous.
* 2.) The offsets are increasing in rank-order.
* 3.) There are no gaps between the offsets.
* 4.) No single rank has a data size which spans multiple file domains.
*
* - GPFSMPIO_BALANCECONTIG - Relevant only to BGQ. File domain blocks are assigned
* to aggregators in a breadth-first fashion relative to the ions - additionally,
* file domains on the aggregators sharing the same bridgeset and ion have contiguous
* offsets. The breadth-first assignment improves performance in the case of
* a relatively small file of size less than the gpfs block size multiplied
* by the number of ions. Files: ad_gpfs_aggrs.c ad_bg_aggrs.c. Possible Values
* - 0 - assign file domain blocks in the traditional manner
* - 1 - if there are variable sized file domain blocks, spread them out
* (balance) across bridge nodes
*
* - GPFSMPIO_DEVNULLIO - do everything *except* write to / read from the file
* system. When experimenting with different two-phase I/O strategies, it's
* helpful to remove the highly variable file system from the experiment.
* - 0 (disabled) or 1 (enabled)
* - Default is 0
*
* - GPFSMPIO_BRIDGERINGAGG - Relevant only to BGQ. Aggregator placement
* optimization whch forms a 5-d ring around the bridge node starting at
* GPFSMPIO_BRIDGERINGAGG hops away. Experimental performance results
* suggest best value is 1 and only in conjunction with GPFSMPIO_P2PCONTIG
* and GPFSMPIO_BALANCECONTIG. The number of aggregators selected is still
* GPFSMPIO_NAGG_PSET however the bridge node itself is NOT selected.
*
*/
void ad_gpfs_get_env_vars() {
char *x, *dummy;
gpfsmpio_comm = 0;
x = getenv( "GPFSMPIO_COMM" );
if (x) gpfsmpio_comm = atoi(x);
gpfsmpio_timing = 0;
x = getenv( "GPFSMPIO_TIMING" );
if (x) gpfsmpio_timing = atoi(x);
gpfsmpio_tunegather = 1;
x = getenv( "GPFSMPIO_TUNEGATHER" );
if (x) gpfsmpio_tunegather = atoi(x);
gpfsmpio_tuneblocking = 1;
x = getenv( "GPFSMPIO_TUNEBLOCKING" );
if (x) gpfsmpio_tuneblocking = atoi(x);
bglocklessmpio_f_type = PVFS2_SUPER_MAGIC;
x = getenv( "BGLOCKLESSMPIO_F_TYPE" );
if (x) bglocklessmpio_f_type = strtol(x,&dummy,0);
DBG_FPRINTF(stderr,"BGLOCKLESSMPIO_F_TYPE=%ld/%#lX\n",
bglocklessmpio_f_type,bglocklessmpio_f_type);
/* note: this value will be 'sanity checked' in ADIOI_BG_persInfo_init(),
* when we know a bit more about what "largest possible value" and
* "smallest possible value" should be */
gpfsmpio_bg_nagg_pset = ADIOI_BG_NAGG_PSET_DFLT;
x = getenv("GPFSMPIO_NAGG_PSET");
if (x) gpfsmpio_bg_nagg_pset = atoi(x);
gpfsmpio_pthreadio = 0;
x = getenv( "GPFSMPIO_PTHREADIO" );
if (x) gpfsmpio_pthreadio = atoi(x);
gpfsmpio_p2pcontig = 0;
x = getenv( "GPFSMPIO_P2PCONTIG" );
if (x) gpfsmpio_p2pcontig = atoi(x);
gpfsmpio_balancecontig = 0;
x = getenv( "GPFSMPIO_BALANCECONTIG" );
if (x) gpfsmpio_balancecontig = atoi(x);
gpfsmpio_devnullio = 0;
x = getenv( "GPFSMPIO_DEVNULLIO" );
if (x) gpfsmpio_devnullio = atoi(x);
gpfsmpio_bridgeringagg = 0;
x = getenv( "GPFSMPIO_BRIDGERINGAGG" );
if (x) gpfsmpio_bridgeringagg = atoi(x);
}
/* report timing breakdown for MPI I/O collective call */
void ad_gpfs_timing_crw_report( int rw, ADIO_File fd, int myrank, int nprocs )
{
int i;
if (gpfsmpio_timing) {
/* Timing across the whole communicator is a little bit interesting,
* but what is *more* interesting is if we single out the aggregators
* themselves. non-aggregators spend a lot of time in "exchange" not
* exchanging data, but blocked because they are waiting for
* aggregators to finish writing. If we focus on just the aggregator
* processes we will get a more clear picture about the data exchange
* vs. i/o time breakdown */
/* if deferred open enabled, we could use the aggregator communicator */
MPI_Comm agg_comm;
int nr_aggs, agg_rank;
MPI_Comm_split(fd->comm, (fd->is_agg ? 1 : MPI_UNDEFINED), 0, &agg_comm);
if(agg_comm != MPI_COMM_NULL) {
MPI_Comm_size(agg_comm, &nr_aggs);
MPI_Comm_rank(agg_comm, &agg_rank);
}
double *gpfsmpio_prof_org = gpfsmpio_prof_cr;
if (rw) gpfsmpio_prof_org = gpfsmpio_prof_cw;
double gpfsmpio_prof_avg[ GPFSMPIO_CIO_LAST ];
double gpfsmpio_prof_max[ GPFSMPIO_CIO_LAST ];
if( agg_comm != MPI_COMM_NULL) {
MPI_Reduce( gpfsmpio_prof_org, gpfsmpio_prof_avg, GPFSMPIO_CIO_LAST, MPI_DOUBLE, MPI_SUM, 0, agg_comm);
MPI_Reduce( gpfsmpio_prof_org, gpfsmpio_prof_max, GPFSMPIO_CIO_LAST, MPI_DOUBLE, MPI_MAX, 0, agg_comm);
}
if (agg_comm != MPI_COMM_NULL && agg_rank == 0) {
for (i=0; i<GPFSMPIO_CIO_LAST; i++) gpfsmpio_prof_avg[i] /= nr_aggs;
gpfsmpio_prof_avg[ GPFSMPIO_CIO_B_POSI_RW ] =
gpfsmpio_prof_avg[ GPFSMPIO_CIO_DATA_SIZE ] * nr_aggs /
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_POSI_RW ];
gpfsmpio_prof_avg[ GPFSMPIO_CIO_B_MPIO_RW ] =
gpfsmpio_prof_avg[ GPFSMPIO_CIO_DATA_SIZE ] * nr_aggs /
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_MPIO_RW ];
gpfsmpio_prof_avg[ GPFSMPIO_CIO_B_MPIO_CRW ] =
gpfsmpio_prof_avg[ GPFSMPIO_CIO_DATA_SIZE ] * nr_aggs /
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_MPIO_CRW ];
fprintf(stderr,"TIMING-%1s,", (rw ? "W" : "R") );
fprintf(stderr,"SIZE: %12.4lld , ", (long long int)(gpfsmpio_prof_avg[ GPFSMPIO_CIO_DATA_SIZE ] * nr_aggs));
fprintf(stderr,"SEEK-avg: %10.3f , ",
gpfsmpio_prof_avg[ GPFSMPIO_CIO_T_SEEK ] );
fprintf(stderr,"SEEK-max: %10.3f , ",
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_SEEK ] );
fprintf(stderr,"LOCAL-avg: %10.3f , ",
gpfsmpio_prof_avg[ GPFSMPIO_CIO_T_LCOMP ] );
fprintf(stderr,"GATHER-max: %10.3f , ",
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_GATHER ] );
fprintf(stderr,"PATTERN-avg: %10.3f , ",
gpfsmpio_prof_avg[ GPFSMPIO_CIO_T_PATANA ] );
fprintf(stderr,"FILEDOMAIN-avg: %10.3f , ",
gpfsmpio_prof_avg[ GPFSMPIO_CIO_T_FD_PART ] );
fprintf(stderr,"MYREQ-avg: %10.3f , ",
gpfsmpio_prof_avg[ GPFSMPIO_CIO_T_MYREQ ] );
fprintf(stderr,"OTHERREQ-max: %10.3f , ",
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_OTHREQ ] );
fprintf(stderr,"EXCHANGE-max: %10.3f , ",
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_DEXCH ] );
fprintf(stderr, "EXCHANGE-RECV_EXCH-max: %10.3f , ",
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_DEXCH_RECV_EXCH] );
fprintf(stderr, "EXCHANGE-SETUP-max: %10.3f , ",
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_DEXCH_SETUP] );
fprintf(stderr, "EXCHANGE-NET-max: %10.3f , ",
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_DEXCH_NET] );
fprintf(stderr, "EXCHANGE-SORT-max: %10.3f , ",
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_DEXCH_SORT] );
fprintf(stderr, "EXCHANGE-SIEVE-max: %10.3f , ",
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_DEXCH_SIEVE] );
fprintf(stderr,"POSIX-TIME-avg: %10.3f , ",
gpfsmpio_prof_avg[ GPFSMPIO_CIO_T_POSI_RW ] );
fprintf(stderr,"POSIX-TIME-max: %10.3f , ",
gpfsmpio_prof_max[ GPFSMPIO_CIO_T_POSI_RW ] );
fprintf(stderr,"MPIIO-CONTIG-TIME-avg: %10.3f , ",
gpfsmpio_prof_avg[ GPFSMPIO_CIO_T_MPIO_RW ] );
fprintf(stderr,"MPIIO-STRIDED-TIME-avg: %10.3f , ",
gpfsmpio_prof_avg[ GPFSMPIO_CIO_T_MPIO_CRW ] );
fprintf(stderr,"POSIX-BW-avg: %10.3f , ",
gpfsmpio_prof_avg[ GPFSMPIO_CIO_B_POSI_RW ] );
fprintf(stderr,"MPI-BW-avg: %10.3f , ",
gpfsmpio_prof_avg[ GPFSMPIO_CIO_B_MPIO_RW ] );
fprintf(stderr,"MPI-BW-collective-avg: %10.3f\n ",
gpfsmpio_prof_avg[ GPFSMPIO_CIO_B_MPIO_CRW ] );
}
if (agg_comm != MPI_COMM_NULL) MPI_Comm_free(&agg_comm);
}
}
|