File: netpatterns_multinomial_tree.c

package info (click to toggle)
openmpi 3.1.3-11
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 118,572 kB
  • sloc: ansic: 628,972; f90: 17,993; makefile: 13,761; sh: 7,051; java: 6,360; perl: 3,215; cpp: 2,225; python: 1,350; lex: 988; fortran: 52; tcl: 12
file content (191 lines) | stat: -rw-r--r-- 6,564 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/*
 * Copyright (c) 2009-2012 Mellanox Technologies.  All rights reserved.
 * Copyright (c) 2009-2012 Oak Ridge National Laboratory.  All rights reserved.
 * Copyright (c) 2017      IBM Corporation. All rights reserved.
 * $COPYRIGHT$
 *
 * Additional copyrights may follow
 *
 * $HEADER$
 */

#include "ompi_config.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <sys/types.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#include <fcntl.h>
#include <stdlib.h>

#include "ompi/constants.h"
#include "netpatterns.h"


/* setup an multi-nomial tree - for each node in the tree
 *  this returns it's parent, and it's children */

OMPI_DECLSPEC int ompi_netpatterns_setup_multinomial_tree(int tree_order, int num_nodes,
        netpatterns_tree_node_t *tree_nodes)
{
    /* local variables */
    int i,result;
    int cnt, n_nodes_in_this_level,node_index;
    int n_cum_nodes,current_level,node,n_nodes_prev_level,rank,parent_rank;
    int n_nodes_in_last_level,n_full_stripes,n_in_partial_stipe,n_children;
    int n_lvls_in_tree;

    /* sanity check */
    if( 1 >= tree_order ) {
        goto Error;
    }


    /* figure out number of levels in the tree */

    n_lvls_in_tree=0;
    result=num_nodes;
    /* cnt - number of ranks in given level */
    cnt=1;
    /*  cummulative count of ranks */
    while( 0 < result ) {
        result-=cnt;
        cnt*=tree_order;
        n_lvls_in_tree++;
    };

    /* loop over tree levels */
    n_nodes_in_this_level=1;
    node_index=-1;
    n_cum_nodes=0;
    for( current_level = 0 ; current_level < n_lvls_in_tree ; current_level++) {

        /* loop over nodes in current level */
        for ( node=0 ; node < n_nodes_in_this_level ; node++ ) {
            /* get node index */
            node_index++;

            /* break if reach group size */
            if( node_index == num_nodes) {
                break;
            }

            tree_nodes[node_index].my_rank=node_index;
            tree_nodes[node_index].children_ranks=NULL;

            /*
             *  Parents
             */
            if( 0 == current_level ) {
                tree_nodes[node_index].n_parents=0;
                /* get parent index */
                tree_nodes[node_index].parent_rank=-1;
            } else {
                tree_nodes[node_index].n_parents=1;
                /* get parent index */
                n_nodes_prev_level=n_nodes_in_this_level/tree_order;
                if( current_level == n_lvls_in_tree -1 ) {
                    /* load balance the lowest level */
                    parent_rank=node-
                        (node/n_nodes_prev_level)*n_nodes_prev_level;
                    parent_rank=n_cum_nodes-n_nodes_prev_level+
                        parent_rank;
                    tree_nodes[node_index].parent_rank=parent_rank;
                } else {
                    tree_nodes[node_index].parent_rank=
                        (n_cum_nodes-n_nodes_prev_level)+node/tree_order;
                }
            }

            /*
             * Children
             */

            /* get number of children */
            if( (n_lvls_in_tree-1) == current_level ) {
                /* leaves have no nodes */
                tree_nodes[node_index].n_children=0;
                tree_nodes[node_index].children_ranks=NULL;
            } else {
                /* take into account last level being incomplete */
                if( (n_lvls_in_tree-2) == current_level ) {
                    /* last level is load balanced */
                    n_nodes_in_last_level=num_nodes-
                        (n_cum_nodes+n_nodes_in_this_level);
                    n_full_stripes=n_nodes_in_last_level/n_nodes_in_this_level;
                    n_in_partial_stipe=n_nodes_in_last_level-
                        n_full_stripes*n_nodes_in_this_level;
                    n_children=n_full_stripes;
                    if( n_full_stripes < tree_order ) {
                        if( node <= n_in_partial_stipe-1 ) {
                            n_children++;
                        }
                    }
                    tree_nodes[node_index].n_children=n_children;
                    if( 0 < n_children ) {
                        tree_nodes[node_index].children_ranks=(int *)
                            malloc(sizeof(int)*n_children);
                        if( NULL == tree_nodes[node_index].children_ranks) {
                            goto Error;
                        }
                    } else {
                        tree_nodes[node_index].children_ranks=NULL;
                    }
                    /* fill in list */
                    for( rank=0 ; rank < n_children ; rank++ ) {
                        tree_nodes[node_index].children_ranks[rank]=
                            node+rank*n_nodes_in_this_level;
                        tree_nodes[node_index].children_ranks[rank]+=
                            (n_cum_nodes+n_nodes_in_this_level);
                    }
                } else {
                    n_children=tree_order;
                    tree_nodes[node_index].n_children=tree_order;
                    tree_nodes[node_index].children_ranks=(int *)
                        malloc(sizeof(int)*n_children);
                    if( NULL == tree_nodes[node_index].children_ranks) {
                        goto Error;
                    }
                    for( rank=0 ; rank < n_children ; rank++ ) {
                        tree_nodes[node_index].children_ranks[rank]=
                            rank+tree_order*node;
                        tree_nodes[node_index].children_ranks[rank]+=
                            (n_cum_nodes+n_nodes_in_this_level);
                    }
                }
            }

        } /* end node loop */

        /* update helper counters */
        n_cum_nodes+=n_nodes_in_this_level;
        n_nodes_in_this_level*=tree_order;
    }

    /* set node type */
    for(i=0 ; i < num_nodes ; i++ ) {
        if( 0 == tree_nodes[i].n_parents ) {
            tree_nodes[i].my_node_type=ROOT_NODE;
        } else if ( 0 == tree_nodes[i].n_children ) {
            tree_nodes[i].my_node_type=LEAF_NODE;
        } else {
            tree_nodes[i].my_node_type=INTERIOR_NODE;
        }
    }

    /* successful return */
    return OMPI_SUCCESS;

Error:
    /* free allocated memory */
    for( i=0 ; i < num_nodes ; i++ ) {
        if( NULL != tree_nodes[i].children_ranks ) {
            free(tree_nodes[i].children_ranks);
        }
    }

    /* error return */
    return OMPI_ERROR;
}