File: netpatterns_nary_tree.c

package info (click to toggle)
openmpi 3.1.3-11
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 118,572 kB
  • sloc: ansic: 628,972; f90: 17,993; makefile: 13,761; sh: 7,051; java: 6,360; perl: 3,215; cpp: 2,225; python: 1,350; lex: 988; fortran: 52; tcl: 12
file content (458 lines) | stat: -rw-r--r-- 12,408 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
 * Copyright (c) 2009-2012 Mellanox Technologies.  All rights reserved.
 * Copyright (c) 2009-2012 Oak Ridge National Laboratory.  All rights reserved.
 * Copyright (c) 2014      Los Alamos National Security, LLC. All rights
 *                         reserved.
 * Copyright (c) 2017      IBM Corporation. All rights reserved.
 * $COPYRIGHT$
 *
 * Additional copyrights may follow
 *
 * $HEADER$
 */

#include "ompi_config.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <sys/types.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>

#include "ompi/constants.h"
#include "netpatterns.h"

/*
 * Create mmaped shared file
 */

/* setup an n-array tree */

int ompi_netpatterns_setup_narray_tree(int tree_order, int my_rank, int num_nodes,
        netpatterns_tree_node_t *my_node)
{
    /* local variables */
    int n_levels, result;
    int my_level_in_tree, cnt;
    int lvl,cum_cnt, my_rank_in_my_level,n_lvls_in_tree;
    int start_index,end_index;

    /* sanity check */
    if( 1 >= tree_order ) {
        goto Error;
    }

    my_node->my_rank=my_rank;
    my_node->tree_size=num_nodes;

    /* figure out number of levels in tree */
    n_levels=0;
    result=num_nodes-1;
    while (0 < result ) {
        result/=tree_order;
        n_levels++;
    };

    /* figure out who my children and parents are */
    my_level_in_tree=-1;
    result=my_rank;
    /* cnt - number of ranks in given level */
    cnt=1;
    /*  cummulative count of ranks */
    while( 0 <= result ) {
        result-=cnt;
        cnt*=tree_order;
        my_level_in_tree++;
    };
    /* int my_level_in_tree, n_children, n_parents; */

    if( 0 == my_rank ) {
        my_node->n_parents=0;
        my_node->parent_rank=-1;
        my_rank_in_my_level=0;
    } else {
        my_node->n_parents=1;
        cnt=1;
        cum_cnt=0;
        for (lvl = 0 ; lvl < my_level_in_tree ; lvl ++ ) {
            /* cummulative count up to this level */
            cum_cnt+=cnt;
            /* number of ranks in this level */
            cnt*=tree_order;
        }
        my_rank_in_my_level=my_rank-cum_cnt;
        /* tree_order consecutive ranks have the same parent */
        my_node->parent_rank=cum_cnt-cnt/tree_order+my_rank_in_my_level/tree_order;
    }

    /* figure out number of levels in the tree */
    n_lvls_in_tree=0;
    result=num_nodes;
    /* cnt - number of ranks in given level */
    cnt=1;
    /*  cummulative count of ranks */
    while( 0 < result ) {
        result-=cnt;
        cnt*=tree_order;
        n_lvls_in_tree++;
    };

    my_node->children_ranks=(int *)NULL;

    /* get list of children */
    if( my_level_in_tree == (n_lvls_in_tree -1 ) ) {
        /* last level has no children */
        my_node->n_children=0;
    } else {
        cum_cnt=0;
        cnt=1;
        for( lvl=0 ; lvl <= my_level_in_tree ; lvl++ ) {
            cum_cnt+=cnt;
            cnt*=tree_order;
        }
        start_index=cum_cnt+my_rank_in_my_level*tree_order;
        end_index=start_index+tree_order-1;

        /* don't go out of bounds at the end of the list */
        if( end_index >= num_nodes ) {
            end_index = num_nodes-1;
        }

        if( start_index <= (num_nodes-1) ) {
            my_node->n_children=end_index-start_index+1;
        } else {
            my_node->n_children=0;
        }

        my_node->children_ranks=NULL;
        if( 0 < my_node->n_children ) {
            my_node->children_ranks=
                (int *)malloc( sizeof(int)*my_node->n_children);
            if( NULL == my_node->children_ranks) {
                goto Error;
            }
            for (lvl= start_index ; lvl <= end_index ; lvl++ ) {
                my_node->children_ranks[lvl-start_index]=lvl;
            }
        }
    }
    /* set node type */
    if( 0 == my_node->n_parents ) {
        my_node->my_node_type=ROOT_NODE;
    } else if ( 0 == my_node->n_children ) {
        my_node->my_node_type=LEAF_NODE;
    } else {
        my_node->my_node_type=INTERIOR_NODE;
    }


    /* successful return */
    return OMPI_SUCCESS;

Error:

    /* error return */
    return OMPI_ERROR;
}

void ompi_netpatterns_cleanup_narray_knomial_tree (netpatterns_narray_knomial_tree_node_t *my_node)
{
    if (my_node->children_ranks) {
	free (my_node->children_ranks);
	my_node->children_ranks = NULL;
    }

    if (0 != my_node->my_rank) {
	ompi_netpatterns_cleanup_recursive_knomial_tree_node (&my_node->k_node);
    }
}

int ompi_netpatterns_setup_narray_knomial_tree(
        int tree_order, int my_rank, int num_nodes,
        netpatterns_narray_knomial_tree_node_t *my_node)
{
    /* local variables */
    int n_levels, result;
    int my_level_in_tree, cnt ;
    int lvl,cum_cnt, my_rank_in_my_level,n_lvls_in_tree;
    int start_index,end_index;
    int rc;

    /* sanity check */
    if( 1 >= tree_order ) {
        goto Error;
    }

    my_node->my_rank=my_rank;
    my_node->tree_size=num_nodes;

    /* figure out number of levels in tree */
    n_levels=0;
    result=num_nodes-1;
    while (0 < result ) {
        result/=tree_order;
        n_levels++;
    };

    /* figure out who my children and parents are */
    my_level_in_tree=-1;
    result=my_rank;
    /* cnt - number of ranks in given level */
    cnt=1;
    /*  cummulative count of ranks */
    while( 0 <= result ) {
        result-=cnt;
        cnt*=tree_order;
        my_level_in_tree++;
    };
    /* int my_level_in_tree, n_children, n_parents; */

    if( 0 == my_rank ) {
        my_node->n_parents=0;
        my_node->parent_rank=-1;
        my_rank_in_my_level=0;
    } else {
        my_node->n_parents=1;
        cnt=1;
        cum_cnt=0;
        for (lvl = 0 ; lvl < my_level_in_tree ; lvl ++ ) {
            /* cummulative count up to this level */
            cum_cnt+=cnt;
            /* number of ranks in this level */
            cnt*=tree_order;
        }

        my_node->rank_on_level =
            my_rank_in_my_level =
            my_rank-cum_cnt;
        my_node->level_size = cnt;

        rc = ompi_netpatterns_setup_recursive_knomial_tree_node(
                my_node->level_size, my_node->rank_on_level,
                tree_order, &my_node->k_node);
        if (OMPI_SUCCESS != rc) {
            goto Error;
        }

        /* tree_order consecutive ranks have the same parent */
        my_node->parent_rank=cum_cnt-cnt/tree_order+my_rank_in_my_level/tree_order;
    }

    /* figure out number of levels in the tree */
    n_lvls_in_tree=0;
    result=num_nodes;
    /* cnt - number of ranks in given level */
    cnt=1;
    /*  cummulative count of ranks */
    while( 0 < result ) {
        result-=cnt;
        cnt*=tree_order;
        n_lvls_in_tree++;
    };

    if(result < 0) {
        /* reset the size on group */
        num_nodes = cnt / tree_order;
    }

    my_node->children_ranks=(int *)NULL;

    /* get list of children */
    if( my_level_in_tree == (n_lvls_in_tree -1 ) ) {
        /* last level has no children */
        my_node->n_children=0;
    } else {
        cum_cnt=0;
        cnt=1;
        for( lvl=0 ; lvl <= my_level_in_tree ; lvl++ ) {
            cum_cnt+=cnt;
            cnt*=tree_order;
        }
        start_index=cum_cnt+my_rank_in_my_level*tree_order;
        end_index=start_index+tree_order-1;

        /* don't go out of bounds at the end of the list */
        if( end_index >= num_nodes ) {
            end_index = num_nodes-1;
        }

        if( start_index <= (num_nodes-1) ) {
            my_node->n_children=end_index-start_index+1;
        } else {
            my_node->n_children=0;
        }

        my_node->children_ranks=NULL;
        if( 0 < my_node->n_children ) {
            my_node->children_ranks=
                (int *)malloc( sizeof(int)*my_node->n_children);
            if( NULL == my_node->children_ranks) {
                goto Error;
            }
            for (lvl= start_index ; lvl <= end_index ; lvl++ ) {
                my_node->children_ranks[lvl-start_index]=lvl;
            }
        }
    }
    /* set node type */
    if( 0 == my_node->n_parents ) {
        my_node->my_node_type=ROOT_NODE;
    } else if ( 0 == my_node->n_children ) {
        my_node->my_node_type=LEAF_NODE;
    } else {
        my_node->my_node_type=INTERIOR_NODE;
    }


    /* successful return */
    return OMPI_SUCCESS;

Error:

    /* error return */
    return OMPI_ERROR;
}

/* calculate the nearest power of radix that is equal to or greater
 * than size, with the specified radix.  The resulting tree is of
 * depth n_lvls.
 */
int ompi_roundup_to_power_radix ( int radix, int size, int *n_lvls )
{
    int n_levels=0, return_value=1;
    int result;
    if( 1 > size ) {
        return 0;
    }

    result=size-1;
    while (0 < result ) {
        result/=radix;
        n_levels++;
        return_value*=radix;
    };
    *n_lvls=n_levels;
    return return_value;
}

static int fill_in_node_data(int tree_order, int num_nodes, int my_node,
        netpatterns_tree_node_t *nodes_data)
{
    /* local variables */
    int rc, num_ranks_per_child, num_children, n_extra;
    int child, rank, n_to_offset, n_ranks_to_child;

    /* figure out who are my children */
    num_ranks_per_child=num_nodes/tree_order;
    if( num_ranks_per_child ) {
        num_children=tree_order;
        n_extra=num_nodes-num_ranks_per_child*tree_order;
    } else {
        num_children=num_nodes;
        /* each child has the same number of descendents - 1 */
        n_extra=0;
        /* when there is a child, there is at least one
         * descendent */
        num_ranks_per_child=1;
    }

    nodes_data[my_node].n_children=num_children;
    if( num_children ) {
        nodes_data[my_node].children_ranks=(int *)
            malloc(sizeof(int)*num_children);
        if(!nodes_data[my_node].children_ranks) {

            if ( NULL == nodes_data[my_node].children_ranks )
            {
                fprintf(stderr, "Cannot allocate memory for children_ranks.\n");
                rc = OMPI_ERR_OUT_OF_RESOURCE;
                goto error;
            }
        }
    }

    rank = my_node;
    for( child=0 ; child < num_children ; child ++ ) {

    /* set parent information */
        nodes_data[rank].n_parents=1;
        nodes_data[rank].parent_rank=my_node;
        if( n_extra ) {
            n_to_offset=child;
            if( n_to_offset > n_extra){
                n_to_offset=n_extra;
            }
        } else {
            n_to_offset=0;
        }

        rank=my_node+1+child*num_ranks_per_child;
        rank+=n_to_offset;

        /* set parent information */
        nodes_data[rank].n_parents=1;
        nodes_data[rank].parent_rank=my_node;

        n_ranks_to_child=num_ranks_per_child;
        if(n_extra && (child < n_extra) ) {
            n_ranks_to_child++;
        }

        /* set child information */
        nodes_data[my_node].children_ranks[child]=rank;

        /* remove the child from the list of ranks */
        n_ranks_to_child--;
        rc=fill_in_node_data(tree_order, n_ranks_to_child, rank, nodes_data);
        if( OMPI_SUCCESS != rc ) {
            goto error;
        }

    }

    /* return */
    return OMPI_SUCCESS;

    /* Error */
error:
    return rc;

}

/*
 * This routine sets up the array describing the communication tree for
 * a k-ary tree where the children form a contiguous range of ranks at
 * each level.  The assumption here is that rank 0 is always the root -
 * ranks may be rotated based on who the actual root is, to obtain the
 * appropriate communication pattern for such roots.
 */
OMPI_DECLSPEC int ompi_netpatterns_setup_narray_tree_contigous_ranks(
        int tree_order, int num_nodes,
        netpatterns_tree_node_t **tree_nodes)
{
    /* local variables */
    int num_descendent_ranks=num_nodes-1;
    int rc=OMPI_SUCCESS;

    *tree_nodes=(netpatterns_tree_node_t *)malloc(
            sizeof(netpatterns_tree_node_t)*
            num_nodes);
    if(!(*tree_nodes) ) {
        fprintf(stderr, "Cannot allocate memory for tree_nodes.\n");
        rc = OMPI_ERR_OUT_OF_RESOURCE;
        return rc;
    }

    (*tree_nodes)[0].n_parents=0;
    rc=fill_in_node_data(tree_order,
            num_descendent_ranks, 0, *tree_nodes);

    /* successful return */
    return rc;

}