1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
|
/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
* Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2017 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2006 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2006 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2008-2009 Oak Ridge National Labs. All rights reserved.
* Copyright (c) 2011 NVIDIA Corporation. All rights reserved.
* Copyright (c) 2013 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2017 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "opal_config.h"
#include <stddef.h>
#include <stdio.h>
#include "opal/datatype/opal_convertor_internal.h"
#include "opal/datatype/opal_datatype_internal.h"
#if OPAL_ENABLE_DEBUG
#include "opal/util/output.h"
#define DO_DEBUG(INST) if( opal_unpack_debug ) { INST }
#else
#define DO_DEBUG(INST)
#endif /* OPAL_ENABLE_DEBUG */
#include "opal/datatype/opal_datatype_checksum.h"
#include "opal/datatype/opal_datatype_unpack.h"
#include "opal/datatype/opal_datatype_prototypes.h"
#if defined(CHECKSUM)
#define opal_unpack_general_function opal_unpack_general_checksum
#define opal_unpack_homogeneous_contig_function opal_unpack_homogeneous_contig_checksum
#define opal_generic_simple_unpack_function opal_generic_simple_unpack_checksum
#else
#define opal_unpack_general_function opal_unpack_general
#define opal_unpack_homogeneous_contig_function opal_unpack_homogeneous_contig
#define opal_generic_simple_unpack_function opal_generic_simple_unpack
#endif /* defined(CHECKSUM) */
/**
* This function will be used to unpack all datatypes that have the contiguous flag set.
* Several types of datatypes match this criterion, not only the contiguous one, but
* the ones that have gaps in the beginning and/or at the end but where the data to
* be unpacked is contiguous. However, this function only work for homogeneous cases
* and the datatype that are contiguous and where the extent is equal to the size are
* taken in account directly in the opal_convertor_unpack function (in convertor.c) for
* the homogeneous case.
*/
int32_t
opal_unpack_homogeneous_contig_function( opal_convertor_t* pConv,
struct iovec* iov,
uint32_t* out_size,
size_t* max_data )
{
const opal_datatype_t *pData = pConv->pDesc;
unsigned char *user_memory, *packed_buffer;
uint32_t iov_count, i;
size_t bConverted, remaining, length, initial_bytes_converted = pConv->bConverted;
dt_stack_t* stack = pConv->pStack;
ptrdiff_t extent = pData->ub - pData->lb;
ptrdiff_t initial_displ = pConv->use_desc->desc[pConv->use_desc->used].end_loop.first_elem_disp;
DO_DEBUG( opal_output( 0, "unpack_homogeneous_contig( pBaseBuf %p, iov_count %d )\n",
(void*)pConv->pBaseBuf, *out_size ); );
if( stack[1].type != opal_datatype_uint1.id ) {
stack[1].count *= opal_datatype_basicDatatypes[stack[1].type]->size;
stack[1].type = opal_datatype_uint1.id;
}
for( iov_count = 0; iov_count < (*out_size); iov_count++ ) {
remaining = pConv->local_size - pConv->bConverted;
if( 0 == remaining ) break; /* we're done this time */
if( remaining > (uint32_t)iov[iov_count].iov_len )
remaining = iov[iov_count].iov_len;
packed_buffer = (unsigned char*)iov[iov_count].iov_base;
bConverted = remaining; /* how much will get unpacked this time */
user_memory = pConv->pBaseBuf + initial_displ;
if( (ptrdiff_t)pData->size == extent ) {
user_memory += pConv->bConverted;
DO_DEBUG( opal_output( 0, "unpack_homogeneous_contig( user_memory %p, packed_buffer %p length %lu\n",
(void*)user_memory, (void*)packed_buffer, (unsigned long)remaining ); );
/* contiguous data or basic datatype with count */
OPAL_DATATYPE_SAFEGUARD_POINTER( user_memory, remaining,
pConv->pBaseBuf, pData, pConv->count );
DO_DEBUG( opal_output( 0, "1. unpack contig dest %p src %p length %lu\n",
(void*)user_memory, (void*)packed_buffer, (unsigned long)remaining ); );
MEMCPY_CSUM( user_memory, packed_buffer, remaining, pConv );
} else {
user_memory += stack[0].disp + stack[1].disp;
DO_DEBUG( opal_output( 0, "unpack_homogeneous_contig( user_memory %p, packed_buffer %p length %lu\n",
(void*)user_memory, (void*)packed_buffer, (unsigned long)remaining ); );
length = (0 == pConv->stack_pos ? 0 : stack[1].count); /* left over from the last unpack */
/* complete the last copy */
if( (0 != length) && (length <= remaining) ) {
OPAL_DATATYPE_SAFEGUARD_POINTER( user_memory, length, pConv->pBaseBuf,
pData, pConv->count );
DO_DEBUG( opal_output( 0, "2. unpack dest %p src %p length %lu\n",
(void*)user_memory, (void*)packed_buffer, (unsigned long)length ); );
MEMCPY_CSUM( user_memory, packed_buffer, length, pConv );
packed_buffer += length;
user_memory += (extent - (pData->size - length));
remaining -= length;
stack[1].count -= length;
if( 0 == stack[1].count) { /* one completed element */
stack[0].count--;
stack[0].disp += extent;
if( 0 != stack[0].count ) { /* not yet done */
stack[1].count = pData->size;
stack[1].disp = 0;
}
}
}
for( i = 0; pData->size <= remaining; i++ ) {
OPAL_DATATYPE_SAFEGUARD_POINTER( user_memory, pData->size, pConv->pBaseBuf,
pData, pConv->count );
DO_DEBUG( opal_output( 0, "3. unpack dest %p src %p length %lu\n",
(void*)user_memory, (void*)packed_buffer, (unsigned long)pData->size ); );
MEMCPY_CSUM( user_memory, packed_buffer, pData->size, pConv );
packed_buffer += pData->size;
user_memory += extent;
remaining -= pData->size;
}
stack[0].count -= i;
stack[0].disp += (i * extent);
stack[1].disp += remaining;
/* copy the last bits */
if( 0 != remaining ) {
OPAL_DATATYPE_SAFEGUARD_POINTER( user_memory, remaining, pConv->pBaseBuf,
pData, pConv->count );
DO_DEBUG( opal_output( 0, "4. unpack dest %p src %p length %lu\n",
(void*)user_memory, (void*)packed_buffer, (unsigned long)remaining ); );
MEMCPY_CSUM( user_memory, packed_buffer, remaining, pConv );
user_memory += remaining;
stack[1].count -= remaining;
}
}
pConv->bConverted += bConverted;
}
*out_size = iov_count; /* we only reach this line after the for loop succesfully complete */
*max_data = (pConv->bConverted - initial_bytes_converted);
if( pConv->bConverted == pConv->local_size ) {
pConv->flags |= CONVERTOR_COMPLETED;
return 1;
}
return 0;
}
/**
* This function handle partial types. Depending on the send operation it might happens
* that we receive only a partial type (always predefined type). In fact the outcome is
* that the unpack has to be done in 2 steps. As there is no way to know if the other
* part of the datatype is already received, we need to use a trick to handle this special
* case. The trick is to fill the missing part with some well known value, unpack the data
* as if it was completely received, and then move into the user memory only the bytes
* that don't match th wekk known value. This approach work as long as there is no need
* for more than structural changes. They will not work for cases where we will have to
* change the content of the data (as in all conversions that require changing the size
* of the exponent or mantissa).
*/
static inline uint32_t
opal_unpack_partial_datatype( opal_convertor_t* pConvertor, dt_elem_desc_t* pElem,
unsigned char* partial_data,
ptrdiff_t start_position, ptrdiff_t length,
unsigned char** user_buffer )
{
char unused_byte = 0x7F, saved_data[16];
unsigned char temporary[16], *temporary_buffer = temporary;
unsigned char* user_data = *user_buffer + pElem->elem.disp;
uint32_t i, count_desc = 1;
size_t data_length = opal_datatype_basicDatatypes[pElem->elem.common.type]->size;
DO_DEBUG( opal_output( 0, "unpack partial data start %lu end %lu data_length %lu user %p\n"
"\tbConverted %lu total_length %lu count %d\n",
(unsigned long)start_position, (unsigned long)start_position + length, (unsigned long)data_length, (void*)*user_buffer,
(unsigned long)pConvertor->bConverted, (unsigned long)pConvertor->local_size, pConvertor->count ); );
/* Find a byte that is not used in the partial buffer */
find_unused_byte:
for( i = 0; i < length; i++ ) {
if( unused_byte == partial_data[i] ) {
unused_byte--;
goto find_unused_byte;
}
}
/* Copy and fill the rest of the buffer with the unused byte */
memset( temporary, unused_byte, data_length );
MEMCPY( temporary + start_position, partial_data, length );
#if OPAL_CUDA_SUPPORT
/* In the case where the data is being unpacked from device memory, need to
* use the special host to device memory copy. Note this code path was only
* seen on large receives of noncontiguous data via buffered sends. */
pConvertor->cbmemcpy(saved_data, user_data, data_length, pConvertor );
#else
/* Save the content of the user memory */
MEMCPY( saved_data, user_data, data_length );
#endif
/* Then unpack the data into the user memory */
UNPACK_PREDEFINED_DATATYPE( pConvertor, pElem, count_desc,
temporary_buffer, *user_buffer, data_length );
/* reload the length as it is reset by the macro */
data_length = opal_datatype_basicDatatypes[pElem->elem.common.type]->size;
/* For every occurence of the unused byte move data from the saved
* buffer back into the user memory.
*/
#if OPAL_CUDA_SUPPORT
/* Need to copy the modified user_data again so we can see which
* bytes need to be converted back to their original values. Note
* this code path was only seen on large receives of noncontiguous
* data via buffered sends. */
{
char resaved_data[16];
pConvertor->cbmemcpy(resaved_data, user_data, data_length, pConvertor );
for( i = 0; i < data_length; i++ ) {
if( unused_byte == resaved_data[i] )
pConvertor->cbmemcpy(&user_data[i], &saved_data[i], 1, pConvertor);
}
}
#else
for( i = 0; i < data_length; i++ ) {
if( unused_byte == user_data[i] )
user_data[i] = saved_data[i];
}
#endif
return 0;
}
/* The pack/unpack functions need a cleanup. I have to create a proper interface to access
* all basic functionalities, hence using them as basic blocks for all conversion functions.
*
* But first let's make some global assumptions:
* - a datatype (with the flag DT_DATA set) will have the contiguous flags set if and only if
* the data is really contiguous (extent equal with size)
* - for the OPAL_DATATYPE_LOOP type the DT_CONTIGUOUS flag set means that the content of the loop is
* contiguous but with a gap in the begining or at the end.
* - the DT_CONTIGUOUS flag for the type OPAL_DATATYPE_END_LOOP is meaningless.
*/
int32_t
opal_generic_simple_unpack_function( opal_convertor_t* pConvertor,
struct iovec* iov, uint32_t* out_size,
size_t* max_data )
{
dt_stack_t* pStack; /* pointer to the position on the stack */
uint32_t pos_desc; /* actual position in the description of the derived datatype */
uint32_t count_desc; /* the number of items already done in the actual pos_desc */
size_t total_unpacked = 0; /* total size unpacked this time */
dt_elem_desc_t* description;
dt_elem_desc_t* pElem;
const opal_datatype_t *pData = pConvertor->pDesc;
unsigned char *conv_ptr, *iov_ptr;
size_t iov_len_local;
uint32_t iov_count;
DO_DEBUG( opal_output( 0, "opal_convertor_generic_simple_unpack( %p, {%p, %lu}, %u )\n",
(void*)pConvertor, (void*)iov[0].iov_base, (unsigned long)iov[0].iov_len, *out_size ); );
description = pConvertor->use_desc->desc;
/* For the first step we have to add both displacement to the source. After in the
* main while loop we will set back the source_base to the correct value. This is
* due to the fact that the convertor can stop in the middle of a data with a count
*/
pStack = pConvertor->pStack + pConvertor->stack_pos;
pos_desc = pStack->index;
conv_ptr = pConvertor->pBaseBuf + pStack->disp;
count_desc = (uint32_t)pStack->count;
pStack--;
pConvertor->stack_pos--;
pElem = &(description[pos_desc]);
DO_DEBUG( opal_output( 0, "unpack start pos_desc %d count_desc %d disp %ld\n"
"stack_pos %d pos_desc %d count_desc %d disp %ld\n",
pos_desc, count_desc, (long)(conv_ptr - pConvertor->pBaseBuf),
pConvertor->stack_pos, pStack->index, (int)pStack->count, (long)(pStack->disp) ); );
for( iov_count = 0; iov_count < (*out_size); iov_count++ ) {
iov_ptr = (unsigned char *) iov[iov_count].iov_base;
iov_len_local = iov[iov_count].iov_len;
if( 0 != pConvertor->partial_length ) {
size_t element_length = opal_datatype_basicDatatypes[pElem->elem.common.type]->size;
size_t missing_length = element_length - pConvertor->partial_length;
assert( pElem->elem.common.flags & OPAL_DATATYPE_FLAG_DATA );
COMPUTE_CSUM( iov_ptr, missing_length, pConvertor );
opal_unpack_partial_datatype( pConvertor, pElem,
iov_ptr,
pConvertor->partial_length, element_length - pConvertor->partial_length,
&conv_ptr );
--count_desc;
if( 0 == count_desc ) {
conv_ptr = pConvertor->pBaseBuf + pStack->disp;
pos_desc++; /* advance to the next data */
UPDATE_INTERNAL_COUNTERS( description, pos_desc, pElem, count_desc );
}
iov_ptr += missing_length;
iov_len_local -= missing_length;
pConvertor->partial_length = 0; /* nothing more inside */
}
while( 1 ) {
while( pElem->elem.common.flags & OPAL_DATATYPE_FLAG_DATA ) {
/* now here we have a basic datatype */
UNPACK_PREDEFINED_DATATYPE( pConvertor, pElem, count_desc,
iov_ptr, conv_ptr, iov_len_local );
if( 0 == count_desc ) { /* completed */
conv_ptr = pConvertor->pBaseBuf + pStack->disp;
pos_desc++; /* advance to the next data */
UPDATE_INTERNAL_COUNTERS( description, pos_desc, pElem, count_desc );
continue;
}
assert( pElem->elem.common.type < OPAL_DATATYPE_MAX_PREDEFINED );
if( 0 != iov_len_local ) {
unsigned char* temp = conv_ptr;
/* We have some partial data here. Let's copy it into the convertor
* and keep it hot until the next round.
*/
assert( iov_len_local < opal_datatype_basicDatatypes[pElem->elem.common.type]->size );
COMPUTE_CSUM( iov_ptr, iov_len_local, pConvertor );
opal_unpack_partial_datatype( pConvertor, pElem,
iov_ptr, 0, iov_len_local,
&temp );
pConvertor->partial_length = (uint32_t)iov_len_local;
iov_len_local = 0;
}
goto complete_loop;
}
if( OPAL_DATATYPE_END_LOOP == pElem->elem.common.type ) { /* end of the current loop */
DO_DEBUG( opal_output( 0, "unpack end_loop count %d stack_pos %d pos_desc %d disp %ld space %lu\n",
(int)pStack->count, pConvertor->stack_pos, pos_desc,
(long)pStack->disp, (unsigned long)iov_len_local ); );
if( --(pStack->count) == 0 ) { /* end of loop */
if( 0 == pConvertor->stack_pos ) {
/* Do the same thing as when the loop is completed */
iov[iov_count].iov_len -= iov_len_local; /* update the amount of valid data */
total_unpacked += iov[iov_count].iov_len;
iov_count++; /* go to the next */
goto complete_conversion;
}
pConvertor->stack_pos--;
pStack--;
pos_desc++;
} else {
pos_desc = pStack->index + 1;
if( pStack->index == -1 ) {
pStack->disp += (pData->ub - pData->lb);
} else {
assert( OPAL_DATATYPE_LOOP == description[pStack->index].loop.common.type );
pStack->disp += description[pStack->index].loop.extent;
}
}
conv_ptr = pConvertor->pBaseBuf + pStack->disp;
UPDATE_INTERNAL_COUNTERS( description, pos_desc, pElem, count_desc );
DO_DEBUG( opal_output( 0, "unpack new_loop count %d stack_pos %d pos_desc %d disp %ld space %lu\n",
(int)pStack->count, pConvertor->stack_pos, pos_desc,
(long)pStack->disp, (unsigned long)iov_len_local ); );
}
if( OPAL_DATATYPE_LOOP == pElem->elem.common.type ) {
ptrdiff_t local_disp = (ptrdiff_t)conv_ptr;
if( pElem->loop.common.flags & OPAL_DATATYPE_FLAG_CONTIGUOUS ) {
UNPACK_CONTIGUOUS_LOOP( pConvertor, pElem, count_desc,
iov_ptr, conv_ptr, iov_len_local );
if( 0 == count_desc ) { /* completed */
pos_desc += pElem->loop.items + 1;
goto update_loop_description;
}
/* Save the stack with the correct last_count value. */
}
local_disp = (ptrdiff_t)conv_ptr - local_disp;
PUSH_STACK( pStack, pConvertor->stack_pos, pos_desc, OPAL_DATATYPE_LOOP, count_desc,
pStack->disp + local_disp);
pos_desc++;
update_loop_description: /* update the current state */
conv_ptr = pConvertor->pBaseBuf + pStack->disp;
UPDATE_INTERNAL_COUNTERS( description, pos_desc, pElem, count_desc );
DDT_DUMP_STACK( pConvertor->pStack, pConvertor->stack_pos, pElem, "advance loop" );
continue;
}
}
complete_loop:
iov[iov_count].iov_len -= iov_len_local; /* update the amount of valid data */
total_unpacked += iov[iov_count].iov_len;
}
complete_conversion:
*max_data = total_unpacked;
pConvertor->bConverted += total_unpacked; /* update the already converted bytes */
*out_size = iov_count;
if( pConvertor->bConverted == pConvertor->remote_size ) {
pConvertor->flags |= CONVERTOR_COMPLETED;
return 1;
}
/* Save the global position for the next round */
PUSH_STACK( pStack, pConvertor->stack_pos, pos_desc, pElem->elem.common.type, count_desc,
conv_ptr - pConvertor->pBaseBuf );
DO_DEBUG( opal_output( 0, "unpack save stack stack_pos %d pos_desc %d count_desc %d disp %ld\n",
pConvertor->stack_pos, pStack->index, (int)pStack->count, (long)pStack->disp ); );
return 0;
}
/*
* Remember that the first item in the stack (ie. position 0) is the number
* of times the datatype is involved in the operation (ie. the count argument
* in the MPI_ call).
*/
/* Convert data from multiple input buffers (as received from the network layer)
* to a contiguous output buffer with a predefined size.
* return OPAL_SUCCESS if everything went OK and if there is still room before the complete
* conversion of the data (need additional call with others input buffers )
* 1 if everything went fine and the data was completly converted
* -1 something wrong occurs.
*/
int32_t
opal_unpack_general_function( opal_convertor_t* pConvertor,
struct iovec* iov, uint32_t* out_size,
size_t* max_data )
{
dt_stack_t* pStack; /* pointer to the position on the stack */
uint32_t pos_desc; /* actual position in the description of the derived datatype */
uint32_t count_desc; /* the number of items already done in the actual pos_desc */
uint16_t type = OPAL_DATATYPE_MAX_PREDEFINED; /* type at current position */
size_t total_unpacked = 0; /* total size unpacked this time */
dt_elem_desc_t* description;
dt_elem_desc_t* pElem;
const opal_datatype_t *pData = pConvertor->pDesc;
unsigned char *conv_ptr, *iov_ptr;
size_t iov_len_local;
uint32_t iov_count;
const opal_convertor_master_t* master = pConvertor->master;
ptrdiff_t advance; /* number of bytes that we should advance the buffer */
int32_t rc;
DO_DEBUG( opal_output( 0, "opal_convertor_general_unpack( %p, {%p, %lu}, %u )\n",
(void*)pConvertor, (void*)iov[0].iov_base, (unsigned long)iov[0].iov_len, *out_size ); );
description = pConvertor->use_desc->desc;
/* For the first step we have to add both displacement to the source. After in the
* main while loop we will set back the source_base to the correct value. This is
* due to the fact that the convertor can stop in the middle of a data with a count
*/
pStack = pConvertor->pStack + pConvertor->stack_pos;
pos_desc = pStack->index;
conv_ptr = pConvertor->pBaseBuf + pStack->disp;
count_desc = (uint32_t)pStack->count;
pStack--;
pConvertor->stack_pos--;
pElem = &(description[pos_desc]);
DO_DEBUG( opal_output( 0, "unpack start pos_desc %d count_desc %d disp %ld\n"
"stack_pos %d pos_desc %d count_desc %d disp %ld\n",
pos_desc, count_desc, (long)(conv_ptr - pConvertor->pBaseBuf),
pConvertor->stack_pos, pStack->index, (int)pStack->count, (long)(pStack->disp) ); );
for( iov_count = 0; iov_count < (*out_size); iov_count++ ) {
iov_ptr = (unsigned char *) iov[iov_count].iov_base;
iov_len_local = iov[iov_count].iov_len;
assert( 0 == pConvertor->partial_length );
while( 1 ) {
while( pElem->elem.common.flags & OPAL_DATATYPE_FLAG_DATA ) {
/* now here we have a basic datatype */
type = description[pos_desc].elem.common.type;
OPAL_DATATYPE_SAFEGUARD_POINTER( conv_ptr + pElem->elem.disp, pData->size, pConvertor->pBaseBuf,
pData, pConvertor->count );
DO_DEBUG( opal_output( 0, "unpack (%p, %ld) -> (%p:%ld, %d, %ld) type %s\n",
(void*)iov_ptr, iov_len_local,
(void*)pConvertor->pBaseBuf, conv_ptr + pElem->elem.disp - pConvertor->pBaseBuf,
count_desc, description[pos_desc].elem.extent,
opal_datatype_basicDatatypes[type]->name ); );
rc = master->pFunctions[type]( pConvertor, count_desc,
iov_ptr, iov_len_local, opal_datatype_basicDatatypes[type]->size,
conv_ptr + pElem->elem.disp,
(pConvertor->pDesc->ub - pConvertor->pDesc->lb) * pConvertor->count,
description[pos_desc].elem.extent, &advance );
iov_len_local -= advance; /* decrease the available space in the buffer */
iov_ptr += advance; /* increase the pointer to the buffer */
count_desc -= rc; /* compute leftovers */
if( 0 == count_desc ) { /* completed */
conv_ptr = pConvertor->pBaseBuf + pStack->disp;
pos_desc++; /* advance to the next data */
UPDATE_INTERNAL_COUNTERS( description, pos_desc, pElem, count_desc );
if( 0 == iov_len_local ) goto complete_loop; /* escape if we're done */
continue;
}
conv_ptr += rc * description[pos_desc].elem.extent;
assert( pElem->elem.common.type < OPAL_DATATYPE_MAX_PREDEFINED );
assert( 0 == iov_len_local );
if( 0 != iov_len_local ) {
unsigned char* temp = conv_ptr;
/* We have some partial data here. Let's copy it into the convertor
* and keep it hot until the next round.
*/
assert( iov_len_local < opal_datatype_basicDatatypes[pElem->elem.common.type]->size );
COMPUTE_CSUM( iov_ptr, iov_len_local, pConvertor );
opal_unpack_partial_datatype( pConvertor, pElem,
iov_ptr, 0, iov_len_local,
&temp );
pConvertor->partial_length = (uint32_t)iov_len_local;
iov_len_local = 0;
}
goto complete_loop;
}
if( OPAL_DATATYPE_END_LOOP == pElem->elem.common.type ) { /* end of the current loop */
DO_DEBUG( opal_output( 0, "unpack end_loop count %d stack_pos %d pos_desc %d disp %ld space %lu\n",
(int)pStack->count, pConvertor->stack_pos, pos_desc,
(long)pStack->disp, (unsigned long)iov_len_local ); );
if( --(pStack->count) == 0 ) { /* end of loop */
if( 0 == pConvertor->stack_pos ) {
/* Do the same thing as when the loop is completed */
iov[iov_count].iov_len -= iov_len_local; /* update the amount of valid data */
total_unpacked += iov[iov_count].iov_len;
iov_count++; /* go to the next */
goto complete_conversion;
}
pConvertor->stack_pos--;
pStack--;
pos_desc++;
} else {
pos_desc = pStack->index + 1;
if( pStack->index == -1 ) {
pStack->disp += (pData->ub - pData->lb);
} else {
assert( OPAL_DATATYPE_LOOP == description[pStack->index].loop.common.type );
pStack->disp += description[pStack->index].loop.extent;
}
}
conv_ptr = pConvertor->pBaseBuf + pStack->disp;
UPDATE_INTERNAL_COUNTERS( description, pos_desc, pElem, count_desc );
DO_DEBUG( opal_output( 0, "unpack new_loop count %d stack_pos %d pos_desc %d disp %ld space %lu\n",
(int)pStack->count, pConvertor->stack_pos, pos_desc,
(long)pStack->disp, (unsigned long)iov_len_local ); );
}
if( OPAL_DATATYPE_LOOP == pElem->elem.common.type ) {
PUSH_STACK( pStack, pConvertor->stack_pos, pos_desc, OPAL_DATATYPE_LOOP, count_desc,
pStack->disp );
pos_desc++;
conv_ptr = pConvertor->pBaseBuf + pStack->disp;
UPDATE_INTERNAL_COUNTERS( description, pos_desc, pElem, count_desc );
DDT_DUMP_STACK( pConvertor->pStack, pConvertor->stack_pos, pElem, "advance loop" );
continue;
}
}
complete_loop:
iov[iov_count].iov_len -= iov_len_local; /* update the amount of valid data */
total_unpacked += iov[iov_count].iov_len;
}
complete_conversion:
*max_data = total_unpacked;
pConvertor->bConverted += total_unpacked; /* update the already converted bytes */
*out_size = iov_count;
if( pConvertor->bConverted == pConvertor->remote_size ) {
pConvertor->flags |= CONVERTOR_COMPLETED;
return 1;
}
/* Save the global position for the next round */
PUSH_STACK( pStack, pConvertor->stack_pos, pos_desc, pElem->elem.common.type, count_desc,
conv_ptr - pConvertor->pBaseBuf );
DO_DEBUG( opal_output( 0, "unpack save stack stack_pos %d pos_desc %d count_desc %d disp %ld\n",
pConvertor->stack_pos, pStack->index, (int)pStack->count, (long)pStack->disp ); );
return 0;
}
|