File: opal_tree.c

package info (click to toggle)
openmpi 4.1.4-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 127,592 kB
  • sloc: ansic: 690,998; makefile: 43,047; f90: 19,220; sh: 7,182; java: 6,360; perl: 3,590; cpp: 2,227; python: 1,350; lex: 989; fortran: 61; tcl: 12
file content (334 lines) | stat: -rw-r--r-- 10,030 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*
 * Copyright (c) 2011      Oracle and/or its affiliates.  All rights reserved.
 * Copyright (c) 2014 Cisco Systems, Inc.  All rights reserved.
 * $COPYRIGHT$
 *
 * Additional copyrights may follow
 *
 * $HEADER$
 */

#include "opal_config.h"
#include <assert.h>

#include "support.h"
#include "opal/class/opal_tree.h"
#include "opal/runtime/opal.h"
#include "opal/constants.h"

#include <math.h>
#include <string.h>

/*
 * Data type used for testing
 */
typedef struct test_data {
    /* tree data structure */
    opal_tree_item_t tree_element;
    /* test data */
    size_t data;
} test_data_t;

OBJ_CLASS_INSTANCE(test_data_t,
                   opal_tree_item_t,
                   NULL, NULL);

static void check_descendants(opal_tree_item_t* item, unsigned *data,
                              unsigned level, int *err_order,
                              int *err_ancestor);
static int test_comp(opal_tree_item_t *item, void *key);
static int test_serialize(opal_tree_item_t *item, opal_buffer_t *buffer);
static int test_deserialize(opal_buffer_t *serial_data,
			    opal_tree_item_t **item);
static void *test_get_key(opal_tree_item_t *item);

int main(int argc, char **argv)
{
    /* local variables */
    opal_tree_t tree, x;
    opal_buffer_t *serial_tree;
    size_t i, j, tree_size, size_levels, size_elements, total_elements;
    int err_order, err_ancestor, rc;
    unsigned key;
    test_data_t *elements;
    opal_tree_item_t *item, *rm_item;

    rc = opal_init_util(&argc, &argv);
    test_verify_int(OPAL_SUCCESS, rc);
    if (OPAL_SUCCESS != rc) {
        test_finalize();
        exit(1);
    }

    test_init("opal_tree_t");

    /* initialize tree */

    OBJ_CONSTRUCT(&tree, opal_tree_t);
    opal_tree_init(&tree, test_comp, test_serialize, test_deserialize, test_get_key);
    OBJ_CONSTRUCT(&x, opal_tree_t);
    opal_tree_init(&x, test_comp, test_serialize, test_deserialize, test_get_key);

    /* check length of tree */
    tree_size=opal_tree_get_size(&tree);
    if( 0 == tree_size ) {
        test_success();
    } else {
        test_failure(" opal_tree_get_size");
    }

    /* check for empty */
    if (opal_tree_is_empty(&tree)) {
        test_success();
    } else {
        test_failure(" opal_tree_is_empty(empty tree)");
    }

    /* create test elements */
    size_levels = 4;
    size_elements=4;
    total_elements = size_elements * size_levels;
    elements=(test_data_t *)malloc(sizeof(test_data_t)*total_elements);
    assert(elements);
    for(i=0 ; i < total_elements; i++) {
        OBJ_CONSTRUCT(elements + i, test_data_t);
        (elements+i)->data=i;
    }

    /* check get_root */
    item = opal_tree_get_root(&tree);


    /* populate a 4 level tree (this is weighted to the left side) */
    for (i = 0; i < size_levels; i++) {
        for(j=0 ; j < size_elements ; j++) {
            opal_tree_add_child(item,(opal_tree_item_t *)(elements+
                                                          (i*size_elements)+
                                                          j));
        }
        item = opal_tree_get_first_child(item);
    }

    /* checking for tree size */
    tree_size=opal_tree_get_size(&tree);
    if( tree_size == total_elements ) {
        test_success();
    } else {
        test_failure(" count off for populating 4 level tree");
    }

    /* checking for empty on non-empty tree */
    if (!opal_tree_is_empty(&tree)) {
        test_success();
    } else {
        test_failure(" opal_tree_is_empty(non-empty tree)");
    }

    /* check that we have correct tree ordering */
    err_order = 0;
    err_ancestor = 0;
    if (!opal_tree_is_empty(&tree)) {
        item = opal_tree_get_root(&tree);
        i = 0;
        check_descendants(item, (unsigned *)&i, 0, &err_order, &err_ancestor);
    }

    if (!err_order) {
        test_success();
    } else {
        test_failure(" order values incorrect");
    }
    if (!err_ancestor) {
        test_success();
    } else {
        test_failure(" invalid ancestor count");
    }

    /* test matching code */
    /* check for invalid matching */
    key = 444;
    item = opal_tree_find_with(opal_tree_get_root(&tree), (void*)&key);
    if (NULL == item) {
        test_success();
    } else {
        test_failure(" failed invalid matching item test");
    }

    /* check matching, note nest tests because they rely on previous tests */
    /* check for valid matching descendants */
    key = 4;
    item = opal_tree_find_with(opal_tree_get_root(&tree), (void*)&key);
    if (NULL != item && ((test_data_t*)item)->data == key) {
        test_success();
        /* check for valid matching siblings */
        key = 7;
        item = opal_tree_find_with(item, (void*)&key);
        if (NULL != item && ((test_data_t*)item)->data == key) {
            test_success();
            /* check for valid matching ancestors */
            key = 2;
            item = opal_tree_find_with(item, (void*)&key);
            if (NULL != item && ((test_data_t*)item)->data == key) {
                test_success();
            } else {
                test_failure(" failed valid matching ancestors test");
            }
        } else {
            test_failure(" failed valid matching siblings test");
        }
    } else {
        test_failure(" failed valid matching descendants test");
    }

    /* check subtree removal */
    /* find the first key = 3 item and remove it */
    key = 8;
    tree_size=opal_tree_get_size(&tree);
    item = opal_tree_find_with(opal_tree_get_root(&tree), (void*)&key);
    rm_item = opal_tree_remove_subtree(item);
    if (NULL == rm_item) {
        test_failure(" rm_item should not be NULL");
    }
    /* validate the tree count adjusted */
    if (5 != (tree_size - opal_tree_get_size(&tree))) {
	test_failure(" failed subtree removal tree size test");
    } else {
	/* validate cannot find children in tree */
	key = 13;
	if (NULL !=
	    opal_tree_find_with(opal_tree_get_root(&tree), (void*)&key)) {
	    test_failure(" failed subtree removal item children removed test");
	} else {
	    /* validate cannot find the item */
	    key = 8;
	    if (NULL !=
		opal_tree_find_with(opal_tree_get_root(&tree), (void*)&key)) {
		test_failure(" failed subtree removal item removed test");
	    } else {
		test_success();
	    }
	}
    }

    /* check serialization-deserialization */
    /* serialize tree */
    serial_tree = OBJ_NEW(opal_buffer_t);

    if (OPAL_SUCCESS == opal_tree_serialize(opal_tree_get_root(&tree),
					    serial_tree)) {
        opal_tree_t tmp_tree;
        opal_buffer_t *serial2_tree;

        /* create new tree */
        OBJ_CONSTRUCT(&tmp_tree, opal_tree_t);
        opal_tree_init(&tmp_tree, test_comp, test_serialize,
                       test_deserialize, test_get_key);

        /* deserialize tree */
        opal_tree_deserialize(serial_tree, &(tmp_tree.opal_tree_sentinel));
        /* serialize tmp tree */
	serial2_tree = OBJ_NEW(opal_buffer_t);
        if (OPAL_SUCCESS == opal_tree_serialize(opal_tree_get_root(&tmp_tree),
						serial2_tree)) {
	    void *payload1, *payload2;
	    int32_t size1, size2;

	    /* compare new with original serialization */
        serial_tree->unpack_ptr = serial_tree->base_ptr;
        serial2_tree->unpack_ptr = serial2_tree->unpack_ptr;
	    opal_dss.unload(serial_tree, &payload1, &size1);
	    opal_dss.unload(serial2_tree, &payload2, &size2);
	    if (size1 == size2) {
		if (0 == memcmp(payload1, payload2, size1)) {
		    test_success();
		} else {
		    test_failure(" failed tree deserialization data compare");
		}
	    } else {
		test_failure(" failed tree deserialization size compare");
	    }
	} else {
	    test_failure(" failed tree second pass serialization");
	}
    } else {
        test_failure(" failed tree serialization");
    }

    if (NULL != elements) free(elements);

    opal_finalize_util ();

    return test_finalize();
}

/*
 * check all the descendants from our level and below for correct data and
 * level.  Note this will traverse the tree in a weird fashion where you
 * go across all siblings and then start searching down the last siblings
 * children.  As the current tests are set up if one populated more than just
 * the left sided children things will probably fail.
 */
static void check_descendants(opal_tree_item_t* item,
                              unsigned *data,
                              unsigned level,
                              int *err_order, int *err_ancestor)
{
    test_data_t *ele;

    /* loop over all siblings and then down first child  */
    while (item) {
        /* check item for correctness */
        ele = (test_data_t *)item;
        if (ele->data != *data) {
            (*err_order)++;
        }
        if (item->opal_tree_num_ancestors != level) {
            (*err_ancestor)++;
        }
        (*data)++;
        check_descendants(opal_tree_get_next_sibling(item), data, level,
                          err_order, err_ancestor);
        item = opal_tree_get_first_child(item);
        level++;
    }
    return;
}

static int test_comp(opal_tree_item_t *item, void *key)
{
    if (((test_data_t *)item)->data > *((unsigned *) key)) {
        return(1);
    }
    if (((test_data_t *)item)->data < *((unsigned *) key)) {
        return(-1);
    }
    return(0);
}

static int test_serialize(opal_tree_item_t *item, opal_buffer_t *buffer)
{
    test_data_t *ele = (test_data_t *)item;

    return(opal_dss.pack(buffer, &ele->data, 1, OPAL_INT32));
}

static int test_deserialize(opal_buffer_t *serial_data, opal_tree_item_t **item)
{
    int rc = OPAL_SUCCESS, idx = 1;
    test_data_t *ele;

    ele = (test_data_t *)malloc(sizeof(test_data_t));
    OBJ_CONSTRUCT(ele, test_data_t);
    if (OPAL_SUCCESS == (rc = opal_dss.unpack(serial_data, &ele->data, &idx,
					      OPAL_INT32))) {
	*item = (opal_tree_item_t*)ele;
    } else {
	*item = NULL;
    }
    return(rc);
}

static void *test_get_key(opal_tree_item_t *item)
{
    return (void*) (((test_data_t *)item)->data);
}