1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2005 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2007 University of Houston. All rights reserved.
* Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2013 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2022 Triad National Security, LLC. All rights
* reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "ompi/group/group.h"
#include "ompi/constants.h"
#include "mpi.h"
static bool check_ranks (int, const int *);
int ompi_group_calc_bmap ( int n, int orig_size , const int *ranks) {
if (check_ranks(n,ranks)) {
return ompi_group_div_ceil(orig_size,BSIZE);
}
else {
return -1;
}
}
/* from parent group to child group*/
int ompi_group_translate_ranks_bmap ( ompi_group_t *parent_group,
int n_ranks, const int *ranks1,
ompi_group_t *child_group,
int *ranks2)
{
int i,count,j,k,m;
unsigned char tmp, tmp1;
for (j=0 ; j<n_ranks ; j++) {
if ( MPI_PROC_NULL == ranks1[j]) {
ranks2[j] = MPI_PROC_NULL;
}
else {
ranks2[j] = MPI_UNDEFINED;
m = ranks1[j];
count = 0;
tmp = ( 1 << (m % BSIZE) );
/* check if the bit that corresponds to the parent rank is set in the bitmap */
if ( tmp == (child_group->sparse_data.grp_bitmap.grp_bitmap_array[(int)(m/BSIZE)]
& (1 << (m % BSIZE)))) {
/*
* add up how many bits are set, till we get to the bit of parent
* rank that we want. The rank in the child will be the sum of the bits
* that are set on the way till we get to the corresponding bit
*/
for (i=0 ; i<=(int)(m/BSIZE) ; i++) {
for (k=0 ; k<BSIZE ; k++) {
tmp1 = ( 1 << k);
if ( tmp1 == ( child_group->sparse_data.grp_bitmap.grp_bitmap_array[i]
& (1 << k) ) ) {
count++;
}
if( i==(int)(m/BSIZE) && k==m % BSIZE ) {
ranks2[j] = count-1;
i = (int)(m/BSIZE) + 1;
break;
}
}
}
}
}
}
return OMPI_SUCCESS;
}
/* from child group to parent group */
int ompi_group_translate_ranks_bmap_reverse ( ompi_group_t *child_group,
int n_ranks, const int *ranks1,
ompi_group_t *parent_group,
int *ranks2)
{
int i,j,count,m,k;
unsigned char tmp;
for (j=0 ; j<n_ranks ; j++) {
if ( MPI_PROC_NULL == ranks1[j]) {
ranks2[j] = MPI_PROC_NULL;
}
else {
m = ranks1[j];
count = 0;
/*
* Go through all the bits set in the bitmap up to the child rank.
* The parent rank will be the sum of all bits passed (set and unset)
*/
for (i=0 ; i<child_group->sparse_data.grp_bitmap.grp_bitmap_array_len ; i++) {
for (k=0 ; k<BSIZE ; k++) {
tmp = ( 1 << k);
if ( tmp == ( child_group->sparse_data.grp_bitmap.grp_bitmap_array[i]
& (1 << k) ) ) {
count++;
}
if( m == count-1 ) {
ranks2[j] = i*BSIZE + k;
i = child_group->sparse_data.grp_bitmap.grp_bitmap_array_len + 1;
break;
}
}
}
}
}
return OMPI_SUCCESS;
}
int ompi_group_div_ceil (int num, int den)
{
if (0 == num%den) {
return num/den;
}
else {
return (int)(num/den) + 1;
}
}
/*
* This functions is to check that all ranks in the included list of ranks
* are monotonically increasing. If not, the bitmap format can not be used
* since we won't be able to translate the ranks correctly since the algorithms
* assume that the ranks are in order in the bitmap list.
*/
static bool check_ranks (int n, const int *ranks) {
int i;
for (i=1 ; i < n ; i++) {
if ( ranks[i-1] > ranks [i] ) {
return false;
}
}
return true;
}
int ompi_group_incl_bmap(ompi_group_t* group, int n, const int *ranks,
ompi_group_t **new_group)
{
/* local variables */
int my_group_rank,i,bit_set;
ompi_group_t *group_pointer, *new_group_pointer;
group_pointer = (ompi_group_t *)group;
if ( 0 == n ) {
*new_group = MPI_GROUP_EMPTY;
OBJ_RETAIN(MPI_GROUP_EMPTY);
return OMPI_SUCCESS;
}
new_group_pointer = ompi_group_allocate_bmap(group, n);
if( NULL == new_group_pointer ) {
return MPI_ERR_GROUP;
}
/* Initialize the bit array to zeros */
for (i=0 ; i<new_group_pointer->sparse_data.grp_bitmap.grp_bitmap_array_len ; i++) {
new_group_pointer->
sparse_data.grp_bitmap.grp_bitmap_array[i] = 0;
}
/* set the bits */
for (i=0 ; i<n ; i++) {
bit_set = ranks[i] % BSIZE;
new_group_pointer->
sparse_data.grp_bitmap.grp_bitmap_array[(int)(ranks[i]/BSIZE)] |= (1 << bit_set);
}
new_group_pointer -> grp_parent_group_ptr = group_pointer;
OBJ_RETAIN(new_group_pointer -> grp_parent_group_ptr);
ompi_group_increment_proc_count(new_group_pointer -> grp_parent_group_ptr);
ompi_group_increment_proc_count(new_group_pointer);
my_group_rank=group_pointer->grp_my_rank;
ompi_group_translate_ranks (group_pointer,1,&my_group_rank,
new_group_pointer,&new_group_pointer->grp_my_rank);
*new_group = (MPI_Group)new_group_pointer;
return OMPI_SUCCESS;
}
|