File: coll_base_reduce.c

package info (click to toggle)
openmpi 5.0.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 202,312 kB
  • sloc: ansic: 612,441; makefile: 42,495; sh: 11,230; javascript: 9,244; f90: 7,052; java: 6,404; perl: 5,154; python: 1,856; lex: 740; fortran: 61; cpp: 20; tcl: 12
file content (1144 lines) | stat: -rw-r--r-- 49,696 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
 * Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
 *                         University Research and Technology
 *                         Corporation.  All rights reserved.
 * Copyright (c) 2004-2017 The University of Tennessee and The University
 *                         of Tennessee Research Foundation.  All rights
 *                         reserved.
 * Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
 *                         University of Stuttgart.  All rights reserved.
 * Copyright (c) 2004-2005 The Regents of the University of California.
 *                         All rights reserved.
 * Copyright (c) 2013      Los Alamos National Security, LLC. All Rights
 *                         reserved.
 * Copyright (c) 2015-2016 Research Organization for Information Science
 *                         and Technology (RIST). All rights reserved.
 * Copyright (c) 2016-2017 IBM Corporation.  All rights reserved.
 * Copyright (c) 2018      Siberian State University of Telecommunications
 *                         and Information Science. All rights reserved.
 * Copyright (c) 2022      Cisco Systems, Inc.  All rights reserved.
 * $COPYRIGHT$
 *
 * Additional copyrights may follow
 *
 * $HEADER$
 */

#include "ompi_config.h"

#include "mpi.h"
#include "opal/util/bit_ops.h"
#include "ompi/constants.h"
#include "ompi/datatype/ompi_datatype.h"
#include "ompi/communicator/communicator.h"
#include "ompi/mca/coll/coll.h"
#include "ompi/mca/coll/base/coll_tags.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/op/op.h"
#include "ompi/mca/coll/base/coll_base_functions.h"
#include "coll_base_topo.h"
#include "coll_base_util.h"

int mca_coll_base_reduce_local(const void *inbuf, void *inoutbuf, int count,
                               struct ompi_datatype_t * dtype, struct ompi_op_t * op,
                               mca_coll_base_module_t *module)
{
    /* XXX -- CONST -- do not cast away const -- update ompi/op/op.h */
    ompi_op_reduce(op, (void *)inbuf, inoutbuf, count, dtype);
    return OMPI_SUCCESS;
}

/**
 * This is a generic implementation of the reduce protocol. It used the tree
 * provided as an argument and execute all operations using a segment of
 * count times a datatype.
 * For the last communication it will update the count in order to limit
 * the number of datatype to the original count (original_count)
 *
 * Note that for non-commutative operations we cannot save memory copy
 * for the first block: thus we must copy sendbuf to accumbuf on intermediate
 * to keep the optimized loop happy.
 */
int ompi_coll_base_reduce_generic( const void* sendbuf, void* recvbuf, int original_count,
                                    ompi_datatype_t* datatype, ompi_op_t* op,
                                    int root, ompi_communicator_t* comm,
                                    mca_coll_base_module_t *module,
                                    ompi_coll_tree_t* tree, int count_by_segment,
                                    int max_outstanding_reqs )
{
    char *inbuf[2] = {NULL, NULL}, *inbuf_free[2] = {NULL, NULL};
    char *accumbuf = NULL, *accumbuf_free = NULL;
    char *local_op_buffer = NULL, *sendtmpbuf = NULL;
    ptrdiff_t extent, size, gap = 0, segment_increment;
    ompi_request_t **sreq = NULL, *reqs[2] = {MPI_REQUEST_NULL, MPI_REQUEST_NULL};
    int num_segments, line, ret, segindex, i, rank;
    int recvcount, prevcount, inbi;

    /**
     * Determine number of segments and number of elements
     * sent per operation
     */
    ompi_datatype_type_extent( datatype, &extent );
    num_segments = (int)(((size_t)original_count + (size_t)count_by_segment - (size_t)1) / (size_t)count_by_segment);
    segment_increment = (ptrdiff_t)count_by_segment * extent;

    sendtmpbuf = (char*) sendbuf;
    if( sendbuf == MPI_IN_PLACE ) {
        sendtmpbuf = (char *)recvbuf;
    }

    OPAL_OUTPUT((ompi_coll_base_framework.framework_output, "coll:base:reduce_generic count %d, msg size %ld, segsize %ld, max_requests %d",
                 original_count, (unsigned long)((ptrdiff_t)num_segments * (ptrdiff_t)segment_increment),
                 (unsigned long)segment_increment, max_outstanding_reqs));

    rank = ompi_comm_rank(comm);

    /* non-leaf nodes - wait for children to send me data & forward up
       (if needed) */
    if( tree->tree_nextsize > 0 ) {
        ptrdiff_t real_segment_size;

        /* handle non existent recv buffer (i.e. its NULL) and
           protect the recv buffer on non-root nodes */
        accumbuf = (char*)recvbuf;
        if( (NULL == accumbuf) || (root != rank) ) {
            /* Allocate temporary accumulator buffer. */
            size = opal_datatype_span(&datatype->super, original_count, &gap);
            accumbuf_free = (char*)malloc(size);
            if (accumbuf_free == NULL) {
                line = __LINE__; ret = -1; goto error_hndl;
            }
            accumbuf = accumbuf_free - gap;
        }

        /* If this is a non-commutative operation we must copy
           sendbuf to the accumbuf, in order to simplify the loops */
        
        if (!ompi_op_is_commute(op) && MPI_IN_PLACE != sendbuf) {
            ompi_datatype_copy_content_same_ddt(datatype, original_count,
                                                (char*)accumbuf,
                                                (char*)sendtmpbuf);
        }
        /* Allocate two buffers for incoming segments */
        real_segment_size = opal_datatype_span(&datatype->super, count_by_segment, &gap);
        inbuf_free[0] = (char*) malloc(real_segment_size);
        if( inbuf_free[0] == NULL ) {
            line = __LINE__; ret = -1; goto error_hndl;
        }
        inbuf[0] = inbuf_free[0] - gap;
        /* if there is chance to overlap communication -
           allocate second buffer */
        if( (num_segments > 1) || (tree->tree_nextsize > 1) ) {
            inbuf_free[1] = (char*) malloc(real_segment_size);
            if( inbuf_free[1] == NULL ) {
                line = __LINE__; ret = -1; goto error_hndl;
            }
            inbuf[1] = inbuf_free[1] - gap;
        }

        /* reset input buffer index and receive count */
        inbi = 0;
        recvcount = 0;
        /* for each segment */
        for( segindex = 0; segindex <= num_segments; segindex++ ) {
            prevcount = recvcount;
            /* recvcount - number of elements in current segment */
            recvcount = count_by_segment;
            if( segindex == (num_segments-1) )
                recvcount = original_count - (ptrdiff_t)count_by_segment * (ptrdiff_t)segindex;

            /* for each child */
            for( i = 0; i < tree->tree_nextsize; i++ ) {
                /**
                 * We try to overlap communication:
                 * either with next segment or with the next child
                 */
                /* post irecv for current segindex on current child */
                if( segindex < num_segments ) {
                    void* local_recvbuf = inbuf[inbi];
                    if( 0 == i ) {
                        /* for the first step (1st child per segment) and
                         * commutative operations we might be able to irecv
                         * directly into the accumulate buffer so that we can
                         * reduce(op) this with our sendbuf in one step as
                         * ompi_op_reduce only has two buffer pointers,
                         * this avoids an extra memory copy.
                         *
                         * BUT if the operation is non-commutative or
                         * we are root and are USING MPI_IN_PLACE this is wrong!
                         */
                        if( (ompi_op_is_commute(op)) &&
                            !((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) {
                            local_recvbuf = accumbuf + (ptrdiff_t)segindex * (ptrdiff_t)segment_increment;
                        }
                    }

                    ret = MCA_PML_CALL(irecv(local_recvbuf, recvcount, datatype,
                                             tree->tree_next[i],
                                             MCA_COLL_BASE_TAG_REDUCE, comm,
                                             &reqs[inbi]));
                    if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl;}
                }
                /* wait for previous req to complete, if any.
                   if there are no requests reqs[inbi ^1] will be
                   MPI_REQUEST_NULL. */
                /* wait on data from last child for previous segment */
                ret = ompi_request_wait(&reqs[inbi ^ 1],
                                        MPI_STATUSES_IGNORE );
                if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl;  }
                local_op_buffer = inbuf[inbi ^ 1];
                if( i > 0 ) {
                    /* our first operation is to combine our own [sendbuf] data
                     * with the data we recvd from down stream (but only
                     * the operation is commutative and if we are not root and
                     * not using MPI_IN_PLACE)
                     */
                    if( 1 == i ) {
                        if( (ompi_op_is_commute(op)) &&
                            !((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) {
                            local_op_buffer = sendtmpbuf + (ptrdiff_t)segindex * (ptrdiff_t)segment_increment;
                        }
                    }
                    /* apply operation */
                    ompi_op_reduce(op, local_op_buffer,
                                   accumbuf + (ptrdiff_t)segindex * (ptrdiff_t)segment_increment,
                                   recvcount, datatype );
                } else if ( segindex > 0 ) {
                    void* accumulator = accumbuf + (ptrdiff_t)(segindex-1) * (ptrdiff_t)segment_increment;
                    if( tree->tree_nextsize <= 1 ) {
                        if( (ompi_op_is_commute(op)) &&
                            !((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) {
                            local_op_buffer = sendtmpbuf + (ptrdiff_t)(segindex-1) * (ptrdiff_t)segment_increment;
                        }
                    }
                    ompi_op_reduce(op, local_op_buffer, accumulator, prevcount,
                                   datatype );

                    /* all reduced on available data this step (i) complete,
                     * pass to the next process unless you are the root.
                     */
                    if (rank != tree->tree_root) {
                        /* send combined/accumulated data to parent */
                        ret = MCA_PML_CALL( send( accumulator, prevcount,
                                                  datatype, tree->tree_prev,
                                                  MCA_COLL_BASE_TAG_REDUCE,
                                                  MCA_PML_BASE_SEND_STANDARD,
                                                  comm) );
                        if (ret != MPI_SUCCESS) {
                            line = __LINE__; goto error_hndl;
                        }
                    }

                    /* we stop when segindex = number of segments
                       (i.e. we do num_segment+1 steps for pipelining */
                    if (segindex == num_segments) break;
                }

                /* update input buffer index */
                inbi = inbi ^ 1;
            } /* end of for each child */
        } /* end of for each segment */

        /* clean up */
        if( inbuf_free[0] != NULL) free(inbuf_free[0]);
        if( inbuf_free[1] != NULL) free(inbuf_free[1]);
        if( accumbuf_free != NULL ) free(accumbuf_free);
    }

    /* leaf nodes
       Depending on the value of max_outstanding_reqs and
       the number of segments we have two options:
       - send all segments using blocking send to the parent, or
       - avoid overflooding the parent nodes by limiting the number of
       outstanding requests to max_outstanding_reqs.
       TODO/POSSIBLE IMPROVEMENT: If there is a way to determine the eager size
       for the current communication, synchronization should be used only
       when the message/segment size is smaller than the eager size.
    */
    else {

        /* If the number of segments is less than a maximum number of outstanding
           requests or there is no limit on the maximum number of outstanding
           requests, we send data to the parent using blocking send */
        if ((0 == max_outstanding_reqs) ||
            (num_segments <= max_outstanding_reqs)) {

            segindex = 0;
            while ( original_count > 0) {
                if (original_count < count_by_segment) {
                    count_by_segment = original_count;
                }
                ret = MCA_PML_CALL( send((char*)sendbuf +
                                         (ptrdiff_t)segindex * (ptrdiff_t)segment_increment,
                                         count_by_segment, datatype,
                                         tree->tree_prev,
                                         MCA_COLL_BASE_TAG_REDUCE,
                                         MCA_PML_BASE_SEND_STANDARD,
                                         comm) );
                if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
                segindex++;
                original_count -= count_by_segment;
            }
        }

        /* Otherwise, introduce flow control:
           - post max_outstanding_reqs non-blocking synchronous send,
           - for remaining segments
           - wait for a ssend to complete, and post the next one.
           - wait for all outstanding sends to complete.
        */
        else {

            int creq = 0;

            sreq = ompi_coll_base_comm_get_reqs(module->base_data, max_outstanding_reqs);
            if (NULL == sreq) { line = __LINE__; ret = -1; goto error_hndl; }

            /* post first group of requests */
            for (segindex = 0; segindex < max_outstanding_reqs; segindex++) {
                ret = MCA_PML_CALL( isend((char*)sendbuf +
                                          (ptrdiff_t)segindex * (ptrdiff_t)segment_increment,
                                          count_by_segment, datatype,
                                          tree->tree_prev,
                                          MCA_COLL_BASE_TAG_REDUCE,
                                          MCA_PML_BASE_SEND_SYNCHRONOUS, comm,
                                          &sreq[segindex]) );
                if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl;  }
                original_count -= count_by_segment;
            }

            creq = 0;
            while ( original_count > 0 ) {
                /* wait on a posted request to complete */
                ret = ompi_request_wait(&sreq[creq], MPI_STATUS_IGNORE);
                if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl;  }

                if( original_count < count_by_segment ) {
                    count_by_segment = original_count;
                }
                ret = MCA_PML_CALL( isend((char*)sendbuf +
                                          (ptrdiff_t)segindex * (ptrdiff_t)segment_increment,
                                          count_by_segment, datatype,
                                          tree->tree_prev,
                                          MCA_COLL_BASE_TAG_REDUCE,
                                          MCA_PML_BASE_SEND_SYNCHRONOUS, comm,
                                          &sreq[creq]) );
                if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl;  }
                creq = (creq + 1) % max_outstanding_reqs;
                segindex++;
                original_count -= count_by_segment;
            }

            /* Wait on the remaining request to complete */
            ret = ompi_request_wait_all( max_outstanding_reqs, sreq,
                                         MPI_STATUSES_IGNORE );
            if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl;  }
        }
    }
    return OMPI_SUCCESS;

 error_hndl:  /* error handler */
    /* find a real error code */
    if (MPI_ERR_IN_STATUS == ret) {
        for( i = 0; i < 2; i++ ) {
            if (MPI_REQUEST_NULL == reqs[i]) continue;
            if (MPI_ERR_PENDING == reqs[i]->req_status.MPI_ERROR) continue;
            if (reqs[i]->req_status.MPI_ERROR != MPI_SUCCESS) {
                ret = reqs[i]->req_status.MPI_ERROR;
                break;
            }
        }
    }
    ompi_coll_base_free_reqs(reqs, 2);
    if( NULL != sreq ) {
        if (MPI_ERR_IN_STATUS == ret) {
            for( i = 0; i < max_outstanding_reqs; i++ ) {
                if (MPI_REQUEST_NULL == sreq[i]) continue;
                if (MPI_ERR_PENDING == sreq[i]->req_status.MPI_ERROR) continue;
                if (sreq[i]->req_status.MPI_ERROR != MPI_SUCCESS) {
                    ret = sreq[i]->req_status.MPI_ERROR;
                    break;
                }
            }
        }
        ompi_coll_base_free_reqs(sreq, max_outstanding_reqs);
    }
    if( inbuf_free[0] != NULL ) free(inbuf_free[0]);
    if( inbuf_free[1] != NULL ) free(inbuf_free[1]);
    if( accumbuf_free != NULL ) free(accumbuf);
    OPAL_OUTPUT (( ompi_coll_base_framework.framework_output,
                   "ERROR_HNDL: node %d file %s line %d error %d\n",
                   rank, __FILE__, line, ret ));
    (void)line;  // silence compiler warning
    return ret;
}

/* Attention: this version of the reduce operations does not
   work for:
   - non-commutative operations
   - segment sizes which are not multiplies of the extent of the datatype
     meaning that at least one datatype must fit in the segment !
*/

int ompi_coll_base_reduce_intra_chain( const void *sendbuf, void *recvbuf, int count,
                                        ompi_datatype_t* datatype,
                                        ompi_op_t* op, int root,
                                        ompi_communicator_t* comm,
                                        mca_coll_base_module_t *module,
                                        uint32_t segsize, int fanout,
                                        int max_outstanding_reqs )
{
    int segcount = count;
    size_t typelng;
    mca_coll_base_module_t *base_module = (mca_coll_base_module_t*) module;
    mca_coll_base_comm_t *data = base_module->base_data;

    OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:reduce_intra_chain rank %d fo %d ss %5d", ompi_comm_rank(comm), fanout, segsize));

    COLL_BASE_UPDATE_CHAIN( comm, base_module, root, fanout );
    /**
     * Determine number of segments and number of elements
     * sent per operation
     */
    ompi_datatype_type_size( datatype, &typelng );
    COLL_BASE_COMPUTED_SEGCOUNT( segsize, typelng, segcount );

    return ompi_coll_base_reduce_generic( sendbuf, recvbuf, count, datatype,
                                           op, root, comm, module,
                                           data->cached_chain,
                                           segcount, max_outstanding_reqs );
}


int ompi_coll_base_reduce_intra_pipeline( const void *sendbuf, void *recvbuf,
                                           int count, ompi_datatype_t* datatype,
                                           ompi_op_t* op, int root,
                                           ompi_communicator_t* comm,
                                           mca_coll_base_module_t *module,
                                           uint32_t segsize,
                                           int max_outstanding_reqs  )
{
    int segcount = count;
    size_t typelng;
    mca_coll_base_module_t *base_module = (mca_coll_base_module_t*) module;
    mca_coll_base_comm_t *data = base_module->base_data;

    OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:reduce_intra_pipeline rank %d ss %5d",
                 ompi_comm_rank(comm), segsize));

    COLL_BASE_UPDATE_PIPELINE( comm, base_module, root );

    /**
     * Determine number of segments and number of elements
     * sent per operation
     */
    ompi_datatype_type_size( datatype, &typelng );
    COLL_BASE_COMPUTED_SEGCOUNT( segsize, typelng, segcount );

    return ompi_coll_base_reduce_generic( sendbuf, recvbuf, count, datatype,
                                           op, root, comm, module,
                                           data->cached_pipeline,
                                           segcount, max_outstanding_reqs );
}

int ompi_coll_base_reduce_intra_binary( const void *sendbuf, void *recvbuf,
                                         int count, ompi_datatype_t* datatype,
                                         ompi_op_t* op, int root,
                                         ompi_communicator_t* comm,
                                         mca_coll_base_module_t *module,
                                         uint32_t segsize,
                                         int max_outstanding_reqs  )
{
    int segcount = count;
    size_t typelng;
    mca_coll_base_module_t *base_module = (mca_coll_base_module_t*) module;
    mca_coll_base_comm_t *data = base_module->base_data;

    OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:reduce_intra_binary rank %d ss %5d",
                 ompi_comm_rank(comm), segsize));

    COLL_BASE_UPDATE_BINTREE( comm, base_module, root );

    /**
     * Determine number of segments and number of elements
     * sent per operation
     */
    ompi_datatype_type_size( datatype, &typelng );
    COLL_BASE_COMPUTED_SEGCOUNT( segsize, typelng, segcount );

    return ompi_coll_base_reduce_generic( sendbuf, recvbuf, count, datatype,
                                           op, root, comm, module,
                                           data->cached_bintree,
                                           segcount, max_outstanding_reqs );
}

int ompi_coll_base_reduce_intra_binomial( const void *sendbuf, void *recvbuf,
                                           int count, ompi_datatype_t* datatype,
                                           ompi_op_t* op, int root,
                                           ompi_communicator_t* comm,
                                           mca_coll_base_module_t *module,
                                           uint32_t segsize,
                                           int max_outstanding_reqs  )
{
    int segcount = count;
    size_t typelng;
    mca_coll_base_module_t *base_module = (mca_coll_base_module_t*) module;
    mca_coll_base_comm_t *data = base_module->base_data;

    OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:reduce_intra_binomial rank %d ss %5d",
                 ompi_comm_rank(comm), segsize));

    COLL_BASE_UPDATE_IN_ORDER_BMTREE( comm, base_module, root );

    /**
     * Determine number of segments and number of elements
     * sent per operation
     */
    ompi_datatype_type_size( datatype, &typelng );
    COLL_BASE_COMPUTED_SEGCOUNT( segsize, typelng, segcount );

    return ompi_coll_base_reduce_generic( sendbuf, recvbuf, count, datatype,
                                           op, root, comm, module,
                                           data->cached_in_order_bmtree,
                                           segcount, max_outstanding_reqs );
}

/*
 * reduce_intra_in_order_binary
 *
 * Function:      Logarithmic reduce operation for non-commutative operations.
 * Acecpts:       same as MPI_Reduce()
 * Returns:       MPI_SUCCESS or error code
 */
int ompi_coll_base_reduce_intra_in_order_binary( const void *sendbuf, void *recvbuf,
                                                  int count,
                                                  ompi_datatype_t* datatype,
                                                  ompi_op_t* op, int root,
                                                  ompi_communicator_t* comm,
                                                  mca_coll_base_module_t *module,
                                                  uint32_t segsize,
                                                  int max_outstanding_reqs  )
{
    int ret, rank, size, io_root, segcount = count;
    void *use_this_sendbuf = NULL;
    void *use_this_recvbuf = NULL;
    char *tmpbuf_free = NULL;
    size_t typelng;
    mca_coll_base_module_t *base_module = (mca_coll_base_module_t*) module;
    mca_coll_base_comm_t *data = base_module->base_data;

    rank = ompi_comm_rank(comm);
    size = ompi_comm_size(comm);
    OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:reduce_intra_in_order_binary rank %d ss %5d",
                 rank, segsize));

    COLL_BASE_UPDATE_IN_ORDER_BINTREE( comm, base_module );

    /**
     * Determine number of segments and number of elements
     * sent per operation
     */
    ompi_datatype_type_size( datatype, &typelng );
    COLL_BASE_COMPUTED_SEGCOUNT( segsize, typelng, segcount );

    /* An in-order binary tree must use root (size-1) to preserve the order of
       operations.  Thus, if root is not rank (size - 1), then we must handle
       1. MPI_IN_PLACE option on real root, and
       2. we must allocate temporary recvbuf on rank (size - 1).
       Note that generic function must be careful not to switch order of
       operations for non-commutative ops.
    */
    io_root = size - 1;
    use_this_sendbuf = (void *)sendbuf;
    use_this_recvbuf = recvbuf;
    if (io_root != root) {
        ptrdiff_t dsize, gap = 0;
        char *tmpbuf;

        dsize = opal_datatype_span(&datatype->super, count, &gap);

        if ((root == rank) && (MPI_IN_PLACE == sendbuf)) {
            tmpbuf_free = (char *) malloc(dsize);
            if (NULL == tmpbuf_free) {
                return MPI_ERR_INTERN;
            }
            tmpbuf = tmpbuf_free - gap;
            ompi_datatype_copy_content_same_ddt(datatype, count,
                                                (char*)tmpbuf,
                                                (char*)recvbuf);
            use_this_sendbuf = tmpbuf;
        } else if (io_root == rank) {
            tmpbuf_free = (char *) malloc(dsize);
            if (NULL == tmpbuf_free) {
                return MPI_ERR_INTERN;
            }
            tmpbuf = tmpbuf_free - gap;
            use_this_recvbuf = tmpbuf;
        }
    }

    /* Use generic reduce with in-order binary tree topology and io_root */
    ret = ompi_coll_base_reduce_generic( use_this_sendbuf, use_this_recvbuf, count, datatype,
                                          op, io_root, comm, module,
                                          data->cached_in_order_bintree,
                                          segcount, max_outstanding_reqs );
    if (MPI_SUCCESS != ret) {
        free(tmpbuf_free);
        return ret;
    }

    /* Clean up */
    if (io_root != root) {
        if (root == rank) {
            /* Receive result from rank io_root to recvbuf */
            ret = MCA_PML_CALL(recv(recvbuf, count, datatype, io_root,
                                    MCA_COLL_BASE_TAG_REDUCE, comm,
                                    MPI_STATUS_IGNORE));
            if (MPI_SUCCESS != ret) {
                free(tmpbuf_free);
                return ret;
            }

        } else if (io_root == rank) {
            /* Send result from use_this_recvbuf to root */
            ret = MCA_PML_CALL(send(use_this_recvbuf, count, datatype, root,
                                    MCA_COLL_BASE_TAG_REDUCE,
                                    MCA_PML_BASE_SEND_STANDARD, comm));
            if (MPI_SUCCESS != ret) {
                free(tmpbuf_free);
                return ret;
            }
        }
    }
    if (NULL != tmpbuf_free) {
        free(tmpbuf_free);
    }

    return MPI_SUCCESS;
}

/*
 * Linear functions are copied from the BASIC coll module
 * they do not segment the message and are simple implementations
 * but for some small number of nodes and/or small data sizes they
 * are just as fast as base/tree based segmenting operations
 * and as such may be selected by the decision functions
 * These are copied into this module due to the way we select modules
 * in V1. i.e. in V2 we will handle this differently and so will not
 * have to duplicate code.
 * GEF Oct05 after asking Jeff.
 */

/*
 *  reduce_lin_intra
 *
 *  Function:   - reduction using O(N) algorithm
 *  Accepts:    - same as MPI_Reduce()
 *  Returns:    - MPI_SUCCESS or error code
 */
int
ompi_coll_base_reduce_intra_basic_linear(const void *sbuf, void *rbuf, int count,
                                         struct ompi_datatype_t *dtype,
                                         struct ompi_op_t *op,
                                         int root,
                                         struct ompi_communicator_t *comm,
                                         mca_coll_base_module_t *module)
{
    int i, rank, err, size;
    ptrdiff_t extent, dsize, gap = 0;
    char *free_buffer = NULL;
    char *pml_buffer = NULL;
    char *inplace_temp_free = NULL;
    char *inbuf;

    /* Initialize */

    rank = ompi_comm_rank(comm);
    size = ompi_comm_size(comm);

    /* If not root, send data to the root. */

    if (rank != root) {
        err = MCA_PML_CALL(send(sbuf, count, dtype, root,
                                MCA_COLL_BASE_TAG_REDUCE,
                                MCA_PML_BASE_SEND_STANDARD, comm));
        return err;
    }

    dsize = opal_datatype_span(&dtype->super, count, &gap);
    ompi_datatype_type_extent(dtype, &extent);

    if (MPI_IN_PLACE == sbuf) {
        sbuf = rbuf;
        inplace_temp_free = (char*)malloc(dsize);
        if (NULL == inplace_temp_free) {
            return OMPI_ERR_OUT_OF_RESOURCE;
        }
        rbuf = inplace_temp_free - gap;
    }

    if (size > 1) {
        free_buffer = (char*)malloc(dsize);
        if (NULL == free_buffer) {
            if (NULL != inplace_temp_free) {
                free(inplace_temp_free);
            }
            return OMPI_ERR_OUT_OF_RESOURCE;
        }
        pml_buffer = free_buffer - gap;
    }

    /* Initialize the receive buffer. */

    if (rank == (size - 1)) {
        err = ompi_datatype_copy_content_same_ddt(dtype, count, (char*)rbuf, (char*)sbuf);
    } else {
        err = MCA_PML_CALL(recv(rbuf, count, dtype, size - 1,
                                MCA_COLL_BASE_TAG_REDUCE, comm,
                                MPI_STATUS_IGNORE));
    }
    if (MPI_SUCCESS != err) {
        if (NULL != free_buffer) {
            free(free_buffer);
        }
        if (NULL != inplace_temp_free) {
            free(inplace_temp_free);
        }
        return err;
    }

    /* Loop receiving and calling reduction function (C or Fortran). */

    for (i = size - 2; i >= 0; --i) {
        if (rank == i) {
            inbuf = (char*)sbuf;
        } else {
            err = MCA_PML_CALL(recv(pml_buffer, count, dtype, i,
                                    MCA_COLL_BASE_TAG_REDUCE, comm,
                                    MPI_STATUS_IGNORE));
            if (MPI_SUCCESS != err) {
                if (NULL != free_buffer) {
                    free(free_buffer);
                }
                if (NULL != inplace_temp_free) {
                    free(inplace_temp_free);
                }
                return err;
            }

            inbuf = pml_buffer;
        }

        /* Perform the reduction */

        ompi_op_reduce(op, inbuf, rbuf, count, dtype);
    }

    if (NULL != inplace_temp_free) {
        err = ompi_datatype_copy_content_same_ddt(dtype, count, (char*)sbuf, rbuf);
        free(inplace_temp_free);
    }
    if (NULL != free_buffer) {
        free(free_buffer);
    }

    /* All done */

    return MPI_SUCCESS;
}

/*
 * ompi_coll_base_reduce_intra_redscat_gather
 *
 * Function:  Reduce using Rabenseifner's algorithm.
 * Accepts:   Same arguments as MPI_Reduce
 * Returns:   MPI_SUCCESS or error code
 *
 * Description: an implementation of Rabenseifner's reduce algorithm [1, 2].
 *   [1] Rajeev Thakur, Rolf Rabenseifner and William Gropp.
 *       Optimization of Collective Communication Operations in MPICH //
 *       The Int. Journal of High Performance Computing Applications. Vol 19,
 *       Issue 1, pp. 49--66.
 *   [2] http://www.hlrs.de/mpi/myreduce.html.
 *
 * This algorithm is a combination of a reduce-scatter implemented with
 * recursive vector halving and recursive distance doubling, followed either
 * by a binomial tree gather [1].
 *
 * Step 1. If the number of processes is not a power of two, reduce it to
 * the nearest lower power of two (p' = 2^{\floor{\log_2 p}})
 * by removing r = p - p' extra processes as follows. In the first 2r processes
 * (ranks 0 to 2r - 1), all the even ranks send the second half of the input
 * vector to their right neighbor (rank + 1), and all the odd ranks send
 * the first half of the input vector to their left neighbor (rank - 1).
 * The even ranks compute the reduction on the first half of the vector and
 * the odd ranks compute the reduction on the second half. The odd ranks then
 * send the result to their left neighbors (the even ranks). As a result,
 * the even ranks among the first 2r processes now contain the reduction with
 * the input vector on their right neighbors (the odd ranks). These odd ranks
 * do not participate in the rest of the algorithm, which leaves behind
 * a power-of-two number of processes. The first r even-ranked processes and
 * the last p - 2r processes are now renumbered from 0 to p' - 1.
 *
 * Step 2. The remaining processes now perform a reduce-scatter by using
 * recursive vector halving and recursive distance doubling. The even-ranked
 * processes send the second half of their buffer to rank + 1 and the odd-ranked
 * processes send the first half of their buffer to rank - 1. All processes
 * then compute the reduction between the local buffer and the received buffer.
 * In the next log_2(p') - 1 steps, the buffers are recursively halved, and the
 * distance is doubled. At the end, each of the p' processes has 1 / p' of the
 * total reduction result.
 *
 * Step 3. A binomial tree gather is performed by using recursive vector
 * doubling and distance halving. In the non-power-of-two case, if the root
 * happens to be one of those odd-ranked processes that would normally
 * be removed in the first step, then the role of this process and process 0
 * are interchanged.
 *
 * Limitations:
 *   count >= 2^{\floor{\log_2 p}}
 *   commutative operations only
 *   intra-communicators only
 *
 * Memory requirements (per process):
 *   rank != root: 2 * count * typesize + 4 * \log_2(p) * sizeof(int) = O(count)
 *   rank == root: count * typesize + 4 * \log_2(p) * sizeof(int) = O(count)
 *
 * Recommendations: root = 0, otherwise it is required additional steps
 *                  in the root process.
 */
int ompi_coll_base_reduce_intra_redscat_gather(
    const void *sbuf, void *rbuf, int count, struct ompi_datatype_t *dtype,
    struct ompi_op_t *op, int root, struct ompi_communicator_t *comm,
    mca_coll_base_module_t *module)
{
    int comm_size = ompi_comm_size(comm);
    int rank = ompi_comm_rank(comm);

    OPAL_OUTPUT((ompi_coll_base_framework.framework_output,
                 "coll:base:reduce_intra_redscat_gather: rank %d/%d, root %d",
                 rank, comm_size, root));

    /* Find nearest power-of-two less than or equal to comm_size */
    int nsteps = opal_hibit(comm_size, comm->c_cube_dim + 1);   /* ilog2(comm_size) */
    if (-1 == nsteps) {
        return MPI_ERR_ARG;
    }
    int nprocs_pof2 = 1 << nsteps;                              /* flp2(comm_size) */

    if (nprocs_pof2 < 2 || count < nprocs_pof2 || !ompi_op_is_commute(op)) {
        OPAL_OUTPUT((ompi_coll_base_framework.framework_output,
                     "coll:base:reduce_intra_redscat_gather: rank %d/%d count %d "
                     "switching to basic linear reduce", rank, comm_size, count));
        return ompi_coll_base_reduce_intra_basic_linear(sbuf, rbuf, count, dtype,
                                                        op, root, comm, module);
    }

    int err = MPI_SUCCESS;
    int *rindex = NULL, *rcount = NULL, *sindex = NULL, *scount = NULL;
    ptrdiff_t lb, extent, dsize, gap;
    ompi_datatype_get_extent(dtype, &lb, &extent);
    dsize = opal_datatype_span(&dtype->super, count, &gap);

    /* Temporary buffers */
    char *tmp_buf_raw = NULL, *rbuf_raw = NULL;
    tmp_buf_raw = malloc(dsize);
    if (NULL == tmp_buf_raw) {
        err = OMPI_ERR_OUT_OF_RESOURCE;
        goto cleanup_and_return;
    }
    char *tmp_buf = tmp_buf_raw - gap;

    if (rank != root) {
        rbuf_raw = malloc(dsize);
        if (NULL == rbuf_raw) {
            err = OMPI_ERR_OUT_OF_RESOURCE;
            goto cleanup_and_return;
        }
        rbuf = rbuf_raw - gap;
    }

    if ((rank != root) || (sbuf != MPI_IN_PLACE)) {
        err = ompi_datatype_copy_content_same_ddt(dtype, count, rbuf,
                                                  (char *)sbuf);
        if (MPI_SUCCESS != err) { goto cleanup_and_return; }
    }

    /*
     * Step 1. Reduce the number of processes to the nearest lower power of two
     * p' = 2^{\floor{\log_2 p}} by removing r = p - p' processes.
     * 1. In the first 2r processes (ranks 0 to 2r - 1), all the even ranks send
     *    the second half of the input vector to their right neighbor (rank + 1)
     *    and all the odd ranks send the first half of the input vector to their
     *    left neighbor (rank - 1).
     * 2. All 2r processes compute the reduction on their half.
     * 3. The odd ranks then send the result to their left neighbors
     *    (the even ranks).
     *
     * The even ranks (0 to 2r - 1) now contain the reduction with the input
     * vector on their right neighbors (the odd ranks). The first r even
     * processes and the p - 2r last processes are renumbered from
     * 0 to 2^{\floor{\log_2 p}} - 1. These odd ranks do not participate in the
     * rest of the algorithm.
     */

    int vrank, step, wsize;
    int nprocs_rem = comm_size - nprocs_pof2;

    if (rank < 2 * nprocs_rem) {
        int count_lhalf = count / 2;
        int count_rhalf = count - count_lhalf;

        if (rank % 2 != 0) {
            /*
             * Odd process -- exchange with rank - 1
             * Send the left half of the input vector to the left neighbor,
             * Recv the right half of the input vector from the left neighbor
             */
            err = ompi_coll_base_sendrecv(rbuf, count_lhalf, dtype, rank - 1,
                                          MCA_COLL_BASE_TAG_REDUCE,
                                          (char *)tmp_buf + (ptrdiff_t)count_lhalf * extent,
                                          count_rhalf, dtype, rank - 1,
                                          MCA_COLL_BASE_TAG_REDUCE, comm,
                                          MPI_STATUS_IGNORE, rank);
            if (MPI_SUCCESS != err) { goto cleanup_and_return; }

            /* Reduce on the right half of the buffers (result in rbuf) */
            ompi_op_reduce(op, (char *)tmp_buf + (ptrdiff_t)count_lhalf * extent,
                           (char *)rbuf + count_lhalf * extent, count_rhalf, dtype);

            /* Send the right half to the left neighbor */
            err = MCA_PML_CALL(send((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
                                    count_rhalf, dtype, rank - 1,
                                    MCA_COLL_BASE_TAG_REDUCE,
                                    MCA_PML_BASE_SEND_STANDARD, comm));
            if (MPI_SUCCESS != err) { goto cleanup_and_return; }

            /* This process does not pariticipate in recursive doubling phase */
            vrank = -1;

        } else {
            /*
             * Even process -- exchange with rank + 1
             * Send the right half of the input vector to the right neighbor,
             * Recv the left half of the input vector from the right neighbor
             */
            err = ompi_coll_base_sendrecv((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
                                          count_rhalf, dtype, rank + 1,
                                          MCA_COLL_BASE_TAG_REDUCE,
                                          tmp_buf, count_lhalf, dtype, rank + 1,
                                          MCA_COLL_BASE_TAG_REDUCE, comm,
                                          MPI_STATUS_IGNORE, rank);
            if (MPI_SUCCESS != err) { goto cleanup_and_return; }

            /* Reduce on the right half of the buffers (result in rbuf) */
            ompi_op_reduce(op, tmp_buf, rbuf, count_lhalf, dtype);

            /* Recv the right half from the right neighbor */
            err = MCA_PML_CALL(recv((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
                                    count_rhalf, dtype, rank + 1,
                                    MCA_COLL_BASE_TAG_REDUCE, comm,
                                    MPI_STATUS_IGNORE));
            if (MPI_SUCCESS != err) { goto cleanup_and_return; }

            vrank = rank / 2;
        }
    } else { /* rank >= 2 * nprocs_rem */
        vrank = rank - nprocs_rem;
    }

    /*
     * Step 2. Reduce-scatter implemented with recursive vector halving and
     * recursive distance doubling. We have p' = 2^{\floor{\log_2 p}}
     * power-of-two number of processes with new ranks (vrank) and result in rbuf.
     *
     * The even-ranked processes send the right half of their buffer to rank + 1
     * and the odd-ranked processes send the left half of their buffer to
     * rank - 1. All processes then compute the reduction between the local
     * buffer and the received buffer. In the next \log_2(p') - 1 steps, the
     * buffers are recursively halved, and the distance is doubled. At the end,
     * each of the p' processes has 1 / p' of the total reduction result.
     */

    rindex = malloc(sizeof(*rindex) * nsteps);    /* O(\log_2(p)) */
    sindex = malloc(sizeof(*sindex) * nsteps);
    rcount = malloc(sizeof(*rcount) * nsteps);
    scount = malloc(sizeof(*scount) * nsteps);
    if (NULL == rindex || NULL == sindex || NULL == rcount || NULL == scount) {
        err = OMPI_ERR_OUT_OF_RESOURCE;
        goto cleanup_and_return;
    }

    if (vrank != -1) {
        step = 0;
        wsize = count;
        sindex[0] = rindex[0] = 0;

        for (int mask = 1; mask < nprocs_pof2; mask <<= 1) {
            /*
             * On each iteration: rindex[step] = sindex[step] -- beginning of the
             * current window. Length of the current window is storded in wsize.
             */
            int vdest = vrank ^ mask;
            /* Translate vdest virtual rank to real rank */
            int dest = (vdest < nprocs_rem) ? vdest * 2 : vdest + nprocs_rem;

            if (rank < dest) {
                /*
                 * Recv into the left half of the current window, send the right
                 * half of the window to the peer (perform reduce on the left
                 * half of the current window)
                 */
                rcount[step] = wsize / 2;
                scount[step] = wsize - rcount[step];
                sindex[step] = rindex[step] + rcount[step];
            } else {
                /*
                 * Recv into the right half of the current window, send the left
                 * half of the window to the peer (perform reduce on the right
                 * half of the current window)
                 */
                scount[step] = wsize / 2;
                rcount[step] = wsize - scount[step];
                rindex[step] = sindex[step] + scount[step];
            }

            /* Send part of data from the rbuf, recv into the tmp_buf */
            err = ompi_coll_base_sendrecv((char *)rbuf + (ptrdiff_t)sindex[step] * extent,
                                          scount[step], dtype, dest,
                                          MCA_COLL_BASE_TAG_REDUCE,
                                          (char *)tmp_buf + (ptrdiff_t)rindex[step] * extent,
                                          rcount[step], dtype, dest,
                                          MCA_COLL_BASE_TAG_REDUCE, comm,
                                          MPI_STATUS_IGNORE, rank);
            if (MPI_SUCCESS != err) { goto cleanup_and_return; }

            /* Local reduce: rbuf[] = tmp_buf[] <op> rbuf[] */
            ompi_op_reduce(op, (char *)tmp_buf + (ptrdiff_t)rindex[step] * extent,
                           (char *)rbuf + (ptrdiff_t)rindex[step] * extent,
                           rcount[step], dtype);

            /* Move the current window to the received message */
            if (step + 1 < nsteps) {
                rindex[step + 1] = rindex[step];
                sindex[step + 1] = rindex[step];
                wsize = rcount[step];
                step++;
            }
        }
    }
    /*
     * Assertion: each process has 1 / p' of the total reduction result:
     * rcount[nsteps - 1] elements in the rbuf[rindex[nsteps - 1], ...].
     */

    /*
     * Setup the root process for gather operation.
     * Case 1: root < 2r and root is odd -- root process was excluded on step 1
     *         Recv data from process 0, vroot = 0, vrank = 0
     * Case 2: root < 2r and root is even: vroot = root / 2
     * Case 3: root >= 2r: vroot = root - r
     */
    int vroot = 0;
    if (root < 2 * nprocs_rem) {
        if (root % 2 != 0) {
            vroot = 0;
            if (rank == root) {
                /*
                 * Case 1: root < 2r and root is odd -- root process was
                 * excluded on step 1 (newrank == -1).
                 * Recv a data from the process 0.
                 */
                rindex[0] = 0;
                step = 0, wsize = count;
                for (int mask = 1; mask < nprocs_pof2; mask *= 2) {
                    rcount[step] = wsize / 2;
                    scount[step] = wsize - rcount[step];
                    rindex[step] = 0;
                    sindex[step] = rcount[step];
                    step++;
                    wsize /= 2;
                }

                err = MCA_PML_CALL(recv(rbuf, rcount[nsteps - 1], dtype, 0,
                                        MCA_COLL_BASE_TAG_REDUCE, comm,
                                        MPI_STATUS_IGNORE));
                if (MPI_SUCCESS != err) { goto cleanup_and_return; }
                vrank = 0;

            } else if (vrank == 0) {
                /* Send a data to the root */
                err = MCA_PML_CALL(send(rbuf, rcount[nsteps - 1], dtype, root,
                                        MCA_COLL_BASE_TAG_REDUCE,
                                        MCA_PML_BASE_SEND_STANDARD, comm));
                if (MPI_SUCCESS != err) { goto cleanup_and_return; }
                vrank = -1;
            }
        } else {
            /* Case 2: root < 2r and a root is even: vroot = root / 2 */
            vroot = root / 2;
        }
    } else {
        /* Case 3: root >= 2r: newroot = root - r */
        vroot = root - nprocs_rem;
    }

    /*
     * Step 3. Gather result at the vroot by the binomial tree algorithm.
     * Each process has 1 / p' of the total reduction result:
     * rcount[nsteps - 1] elements in the rbuf[rindex[nsteps - 1], ...].
     * All exchanges are executed in reverse order relative
     * to recursive doubling (previous step).
     */

    if (vrank != -1) {
        int vdest_tree, vroot_tree;
        step = nsteps - 1; /* step = ilog2(p') - 1 */

        for (int mask = nprocs_pof2 >> 1; mask > 0; mask >>= 1) {
            int vdest = vrank ^ mask;
            /* Translate vdest virtual rank to real rank */
            int dest = (vdest < nprocs_rem) ? vdest * 2 : vdest + nprocs_rem;
            if ((vdest == 0) && (root < 2 * nprocs_rem) && (root % 2 != 0))
                dest = root;

            vdest_tree = vdest >> step;
            vdest_tree <<= step;
            vroot_tree = vroot >> step;
            vroot_tree <<= step;
            if (vdest_tree == vroot_tree) {
                /* Send data from rbuf and exit */
                err = MCA_PML_CALL(send((char *)rbuf + (ptrdiff_t)rindex[step] * extent,
                                        rcount[step], dtype, dest,
                                        MCA_COLL_BASE_TAG_REDUCE,
                                        MCA_PML_BASE_SEND_STANDARD, comm));
                if (MPI_SUCCESS != err) { goto cleanup_and_return; }
                break;
            } else {
                /* Recv and continue */
                err = MCA_PML_CALL(recv((char *)rbuf + (ptrdiff_t)sindex[step] * extent,
                                        scount[step], dtype, dest,
                                        MCA_COLL_BASE_TAG_REDUCE, comm,
                                        MPI_STATUS_IGNORE));
                if (MPI_SUCCESS != err) { goto cleanup_and_return; }
            }
            step--;
        }
    }

  cleanup_and_return:
    if (NULL != tmp_buf_raw)
        free(tmp_buf_raw);
    if (NULL != rbuf_raw)
        free(rbuf_raw);
    if (NULL != rindex)
        free(rindex);
    if (NULL != sindex)
        free(sindex);
    if (NULL != rcount)
        free(rcount);
    if (NULL != scount)
        free(scount);
    return err;
}