1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
/*
* Copyright (c) 2018-2023 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2020 Bull S.A.S. All rights reserved.
* Copyright (c) 2022 IBM Corporation. All rights reserved
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/*
* @file
* This files contains all the hierarchical implementations of reduce
*/
#include "coll_han.h"
#include "ompi/mca/coll/base/coll_base_functions.h"
#include "ompi/mca/pml/pml.h"
#include "coll_han_trigger.h"
static int mca_coll_han_reduce_t0_task(void *task_args);
static int mca_coll_han_reduce_t1_task(void *task_args);
static inline void
mca_coll_han_set_reduce_args(mca_coll_han_reduce_args_t * args, mca_coll_task_t * cur_task, void *sbuf, void *rbuf,
int seg_count, struct ompi_datatype_t *dtype, struct ompi_op_t *op,
int root_up_rank, int root_low_rank,
struct ompi_communicator_t *up_comm,
struct ompi_communicator_t *low_comm,
int num_segments, int cur_seg, int w_rank, int last_seg_count,
bool noop, bool is_tmp_rbuf)
{
args->cur_task = cur_task;
args->sbuf = sbuf;
args->rbuf = rbuf;
args->seg_count = seg_count;
args->dtype = dtype;
args->op = op;
args->root_low_rank = root_low_rank;
args->root_up_rank = root_up_rank;
args->up_comm = up_comm;
args->low_comm = low_comm;
args->num_segments = num_segments;
args->cur_seg = cur_seg;
args->w_rank = w_rank;
args->last_seg_count = last_seg_count;
args->noop = noop;
args->is_tmp_rbuf = is_tmp_rbuf;
}
/*
* Each segment of the message needs to go though 2 steps to perform MPI_Reduce:
* lb: low level (shared-memory or intra-node) reduce.
* ub: upper level (inter-node) reduce
* Hence, in each iteration, there is a combination of collective operations which is called a task.
* | seg 0 | seg 1 | seg 2 | seg 3 |
* iter 0 | lr | | | | task: t0, contains lr
* iter 1 | ur | lr | | | task: t1, contains ur and lr
* iter 2 | | ur | lr | | task: t1, contains ur and lr
* iter 3 | | | ur | lr | task: t1, contains ur and lr
* iter 4 | | | | ur | task: t1, contains ur
*/
int
mca_coll_han_reduce_intra(const void *sbuf,
void *rbuf,
int count,
struct ompi_datatype_t *dtype,
ompi_op_t* op,
int root,
struct ompi_communicator_t *comm,
mca_coll_base_module_t * module)
{
mca_coll_han_module_t *han_module = (mca_coll_han_module_t *) module;
ptrdiff_t extent, lb;
int seg_count = count, w_rank;
size_t dtype_size;
/* No support for non-commutative operations */
if(!ompi_op_is_commute(op)) {
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
"han cannot handle reduce with this operation. Fall back on another component\n"));
goto prev_reduce_intra;
}
/* Create the subcommunicators */
if( OMPI_SUCCESS != mca_coll_han_comm_create(comm, han_module) ) {
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
"han cannot handle reduce with this communicator. Drop HAN support in this communicator and fall back on another component\n"));
/* HAN cannot work with this communicator so fallback on all modules */
HAN_LOAD_FALLBACK_COLLECTIVES(han_module, comm);
return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
comm, han_module->previous_reduce_module);
}
/* Topo must be initialized to know rank distribution which then is used to
* determine if han can be used */
mca_coll_han_topo_init(comm, han_module, 2);
if (han_module->are_ppn_imbalanced) {
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
"han cannot handle reduce with this communicator (imbalanced). Drop HAN support in this communicator and fall back on another component\n"));
/* Put back the fallback collective support and call it once. All
* future calls will then be automatically redirected.
*/
HAN_LOAD_FALLBACK_COLLECTIVE(han_module, comm, reduce);
return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
comm, han_module->previous_reduce_module);
}
ompi_datatype_get_extent(dtype, &lb, &extent);
w_rank = ompi_comm_rank(comm);
ompi_datatype_type_size(dtype, &dtype_size);
ompi_communicator_t *low_comm;
ompi_communicator_t *up_comm;
/* use MCA parameters for now */
low_comm = han_module->cached_low_comms[mca_coll_han_component.han_reduce_low_module];
up_comm = han_module->cached_up_comms[mca_coll_han_component.han_reduce_up_module];
COLL_BASE_COMPUTED_SEGCOUNT(mca_coll_han_component.han_reduce_segsize, dtype_size,
seg_count);
int num_segments = (count + seg_count - 1) / seg_count;
OPAL_OUTPUT_VERBOSE((20, mca_coll_han_component.han_output,
"In HAN seg_count %d count %d num_seg %d\n",
seg_count, count, num_segments));
int *vranks = han_module->cached_vranks;
int low_rank = ompi_comm_rank(low_comm);
int low_size = ompi_comm_size(low_comm);
int up_rank = ompi_comm_rank(up_comm);
int root_low_rank;
int root_up_rank;
mca_coll_han_get_ranks(vranks, root, low_size, &root_low_rank, &root_up_rank);
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
"[%d]: root_low_rank %d root_up_rank %d\n", w_rank, root_low_rank,
root_up_rank));
void *tmp_rbuf = rbuf;
void *tmp_rbuf_to_free = NULL;
if (low_rank == root_low_rank && root_up_rank != up_rank) {
/* allocate 2 segments on node leaders that are not the global root */
tmp_rbuf = malloc(2*extent*seg_count);
tmp_rbuf_to_free = tmp_rbuf;
}
/* Create t0 tasks for the first segment */
mca_coll_task_t *t0 = OBJ_NEW(mca_coll_task_t);
/* Setup up t0 task arguments */
mca_coll_han_reduce_args_t *t = malloc(sizeof(mca_coll_han_reduce_args_t));
mca_coll_han_set_reduce_args(t, t0, (char *) sbuf, (char *) tmp_rbuf, seg_count, dtype,
op, root_up_rank, root_low_rank, up_comm, low_comm,
num_segments, 0, w_rank, count - (num_segments - 1) * seg_count,
low_rank != root_low_rank, (NULL != tmp_rbuf_to_free));
/* Init the first task */
init_task(t0, mca_coll_han_reduce_t0_task, (void *) t);
issue_task(t0);
/* Create t1 task */
mca_coll_task_t *t1 = OBJ_NEW(mca_coll_task_t);
/* Setup up t1 task arguments */
t->cur_task = t1;
/* Init the t1 task */
init_task(t1, mca_coll_han_reduce_t1_task, (void *) t);
issue_task(t1);
while (t->cur_seg <= t->num_segments - 2) {
/* Create t_next_seg task */
mca_coll_task_t *t_next_seg = OBJ_NEW(mca_coll_task_t);
/* Setup up t_next_seg task arguments */
t->cur_task = t_next_seg;
if (t->sbuf != MPI_IN_PLACE) {
t->sbuf = (char *) t->sbuf + extent * t->seg_count;
}
if (up_rank == root_up_rank) {
t->rbuf = (char *) t->rbuf + extent * t->seg_count;
}
t->cur_seg = t->cur_seg + 1;
/* Init the t_next_seg task */
init_task(t_next_seg, mca_coll_han_reduce_t1_task, (void *) t);
issue_task(t_next_seg);
}
free(t);
free(tmp_rbuf_to_free);
return OMPI_SUCCESS;
prev_reduce_intra:
return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
comm,
han_module->previous_reduce_module);
}
/* t0 task: issue and wait for the low level reduce of segment 0 */
int mca_coll_han_reduce_t0_task(void *task_args)
{
mca_coll_han_reduce_args_t *t = (mca_coll_han_reduce_args_t *) task_args;
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "[%d]: in t0 %d\n", t->w_rank,
t->cur_seg));
OBJ_RELEASE(t->cur_task);
ptrdiff_t extent, lb;
ompi_datatype_get_extent(t->dtype, &lb, &extent);
t->low_comm->c_coll->coll_reduce((char *) t->sbuf, (char *) t->rbuf, t->seg_count, t->dtype,
t->op, t->root_low_rank, t->low_comm,
t->low_comm->c_coll->coll_reduce_module);
return OMPI_SUCCESS;
}
/* t1 task */
int mca_coll_han_reduce_t1_task(void *task_args) {
mca_coll_han_reduce_args_t *t = (mca_coll_han_reduce_args_t *) task_args;
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "[%d]: in t1 %d\n", t->w_rank,
t->cur_seg));
OBJ_RELEASE(t->cur_task);
ptrdiff_t extent, lb;
int cur_seg = t->cur_seg;
ompi_datatype_get_extent(t->dtype, &lb, &extent);
ompi_request_t *ireduce_req = NULL;
if (!t->noop) {
int tmp_count = t->seg_count;
if (cur_seg == t->num_segments - 1 && t->last_seg_count != t->seg_count) {
tmp_count = t->last_seg_count;
}
int up_rank = ompi_comm_rank(t->up_comm);
/* ur of cur_seg */
if (up_rank == t->root_up_rank) {
t->up_comm->c_coll->coll_ireduce(MPI_IN_PLACE, (char *) t->rbuf, tmp_count, t->dtype,
t->op, t->root_up_rank, t->up_comm, &ireduce_req,
t->up_comm->c_coll->coll_ireduce_module);
} else {
/* this is a node leader that is not root so alternate between the two allocated segments */
char *tmp_sbuf = (char*)t->rbuf + (cur_seg % 2)*(extent * t->seg_count);
t->up_comm->c_coll->coll_ireduce(tmp_sbuf, NULL, tmp_count,
t->dtype, t->op, t->root_up_rank, t->up_comm,
&ireduce_req, t->up_comm->c_coll->coll_ireduce_module);
}
}
/* lr of cur_seg+1 */
int next_seg = cur_seg + 1;
if (next_seg <= t->num_segments - 1) {
int tmp_count = t->seg_count;
char *tmp_rbuf = NULL;
char *tmp_sbuf = NULL;
if (next_seg == t->num_segments - 1 && t->last_seg_count != t->seg_count) {
tmp_count = t->last_seg_count;
}
if (t->is_tmp_rbuf) {
tmp_rbuf = (char*)t->rbuf + (next_seg % 2)*(extent * t->seg_count);
} else if (NULL != t->rbuf) {
tmp_rbuf = (char*)t->rbuf + extent * t->seg_count;
}
tmp_sbuf = (t->sbuf == MPI_IN_PLACE) ? MPI_IN_PLACE : (char *)t->sbuf + extent * t->seg_count;
t->low_comm->c_coll->coll_reduce((char *) tmp_sbuf,
(char *) tmp_rbuf, tmp_count,
t->dtype, t->op, t->root_low_rank, t->low_comm,
t->low_comm->c_coll->coll_reduce_module);
}
if (!t->noop && ireduce_req) {
ompi_request_wait(&ireduce_req, MPI_STATUS_IGNORE);
}
return OMPI_SUCCESS;
}
/* In case of non regular situation (imbalanced number of processes per nodes),
* a fallback is made on the next component that provides a reduce in priority order */
int
mca_coll_han_reduce_intra_simple(const void *sbuf,
void* rbuf,
int count,
struct ompi_datatype_t *dtype,
ompi_op_t *op,
int root,
struct ompi_communicator_t *comm,
mca_coll_base_module_t *module)
{
int w_rank; /* information about the global communicator */
int root_low_rank, root_up_rank; /* root ranks for both sub-communicators */
int ret;
int *vranks, low_rank, low_size;
ptrdiff_t rsize, rgap = 0;
void * tmp_buf;
mca_coll_han_module_t *han_module = (mca_coll_han_module_t *)module;
/* No support for non-commutative operations */
if(!ompi_op_is_commute(op)){
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
"han cannot handle reduce with this operation. Fall back on another component\n"));
goto prev_reduce_intra;
}
/* Create the subcommunicators */
if( OMPI_SUCCESS != mca_coll_han_comm_create(comm, han_module) ) {
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
"han cannot handle reduce with this communicator. Drop HAN support in this communicator and fall back on another component\n"));
/* HAN cannot work with this communicator so fallback on all collectives */
HAN_LOAD_FALLBACK_COLLECTIVES(han_module, comm);
return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
comm, han_module->previous_reduce_module);
}
/* Topo must be initialized to know rank distribution which then is used to
* determine if han can be used */
mca_coll_han_topo_init(comm, han_module, 2);
if (han_module->are_ppn_imbalanced) {
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
"han cannot handle reduce with this communicator (imbalanced). Drop HAN support in this communicator and fall back on another component\n"));
/* Put back the fallback collective support and call it once. All
* future calls will then be automatically redirected.
*/
HAN_LOAD_FALLBACK_COLLECTIVE(han_module, comm, reduce);
return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
comm, han_module->previous_reduce_module);
}
ompi_communicator_t *low_comm =
han_module->cached_low_comms[mca_coll_han_component.han_reduce_low_module];
ompi_communicator_t *up_comm =
han_module->cached_up_comms[mca_coll_han_component.han_reduce_up_module];
/* Get the 'virtual ranks' mapping corresponding to the communicators */
vranks = han_module->cached_vranks;
w_rank = ompi_comm_rank(comm);
low_rank = ompi_comm_rank(low_comm);
low_size = ompi_comm_size(low_comm);
/* Get root ranks for low and up comms */
mca_coll_han_get_ranks(vranks, root, low_size, &root_low_rank, &root_up_rank);
if (root_low_rank == low_rank && w_rank != root) {
rsize = opal_datatype_span(&dtype->super, (int64_t)count, &rgap);
tmp_buf = malloc(rsize);
if (NULL == tmp_buf) {
return OMPI_ERROR;
}
} else {
/* global root rbuf is valid, local non-root do not need buffers */
tmp_buf = rbuf;
}
/* No need to handle MPI_IN_PLACE: only the global root may ask for it and
* it is ok to use it for intermediary reduces since it is also a local root*/
/* Low_comm reduce */
ret = low_comm->c_coll->coll_reduce((char *)sbuf, (char *)tmp_buf,
count, dtype, op, root_low_rank,
low_comm, low_comm->c_coll->coll_reduce_module);
if (OPAL_UNLIKELY(OMPI_SUCCESS != ret)){
if (root_low_rank == low_rank && w_rank != root){
free(tmp_buf);
}
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
"HAN/REDUCE: low comm reduce failed. "
"Falling back to another component\n"));
goto prev_reduce_intra;
}
/* Up_comm reduce */
if (root_low_rank == low_rank ){
if(w_rank != root){
ret = up_comm->c_coll->coll_reduce((char *)tmp_buf, NULL,
count, dtype, op, root_up_rank,
up_comm, up_comm->c_coll->coll_reduce_module);
free(tmp_buf);
} else {
/* Take advantage of any optimisation made for IN_PLACE
* communications */
ret = up_comm->c_coll->coll_reduce(MPI_IN_PLACE, (char *)tmp_buf,
count, dtype, op, root_up_rank,
up_comm, up_comm->c_coll->coll_reduce_module);
}
if (OPAL_UNLIKELY(OMPI_SUCCESS != ret)){
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
"HAN/REDUCE: low comm reduce failed.\n"));
return ret;
}
}
return OMPI_SUCCESS;
prev_reduce_intra:
return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
comm, han_module->previous_reduce_module);
}
/* Find a fallback on reproducible algorithm
* use tuned or basic or if impossible whatever available
*/
int
mca_coll_han_reduce_reproducible_decision(struct ompi_communicator_t *comm,
mca_coll_base_module_t *module)
{
int w_rank = ompi_comm_rank(comm);
mca_coll_han_module_t *han_module = (mca_coll_han_module_t *)module;
/* populate previous modules_storage*/
mca_coll_han_get_all_coll_modules(comm, han_module);
/* try availability of reproducible modules */
int fallbacks[] = {TUNED, BASIC};
int fallbacks_len = sizeof(fallbacks) / sizeof(*fallbacks);
int i;
for (i=0; i<fallbacks_len; i++) {
int fallback = fallbacks[i];
mca_coll_base_module_t *fallback_module
= han_module->modules_storage.modules[fallback].module_handler;
if (fallback_module != NULL && fallback_module->coll_reduce != NULL) {
if (0 == w_rank) {
opal_output_verbose(30, mca_coll_han_component.han_output,
"coll:han:reduce_reproducible: "
"fallback on %s\n",
ompi_coll_han_available_components[fallback].component_name);
}
han_module->reproducible_reduce_module = fallback_module;
han_module->reproducible_reduce = fallback_module->coll_reduce;
return OMPI_SUCCESS;
}
}
/* fallback of the fallback */
if (0 == w_rank) {
opal_output_verbose(5, mca_coll_han_component.han_output,
"coll:han:reduce_reproducible_decision: "
"no reproducible fallback\n");
}
han_module->reproducible_reduce_module =
han_module->previous_reduce_module;
han_module->reproducible_reduce = han_module->previous_reduce;
return OMPI_SUCCESS;
}
/* Fallback on reproducible algorithm */
int
mca_coll_han_reduce_reproducible(const void *sbuf,
void *rbuf,
int count,
struct ompi_datatype_t *dtype,
struct ompi_op_t *op,
int root,
struct ompi_communicator_t *comm,
mca_coll_base_module_t *module)
{
mca_coll_han_module_t *han_module = (mca_coll_han_module_t *)module;
return han_module->reproducible_reduce(sbuf, rbuf, count, dtype,
op, root, comm,
han_module
->reproducible_reduce_module);
}
|