File: coll_han_reduce.c

package info (click to toggle)
openmpi 5.0.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 202,312 kB
  • sloc: ansic: 612,441; makefile: 42,495; sh: 11,230; javascript: 9,244; f90: 7,052; java: 6,404; perl: 5,154; python: 1,856; lex: 740; fortran: 61; cpp: 20; tcl: 12
file content (457 lines) | stat: -rw-r--r-- 19,881 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
/*
 * Copyright (c) 2018-2023 The University of Tennessee and The University
 *                         of Tennessee Research Foundation.  All rights
 *                         reserved.
 * Copyright (c) 2020      Bull S.A.S. All rights reserved.
 * Copyright (c) 2022      IBM Corporation. All rights reserved
 * $COPYRIGHT$
 *
 * Additional copyrights may follow
 *
 * $HEADER$
 */

/*
 * @file
 * This files contains all the hierarchical implementations of reduce
 */

#include "coll_han.h"
#include "ompi/mca/coll/base/coll_base_functions.h"
#include "ompi/mca/pml/pml.h"
#include "coll_han_trigger.h"

static int mca_coll_han_reduce_t0_task(void *task_args);
static int mca_coll_han_reduce_t1_task(void *task_args);

static inline void
mca_coll_han_set_reduce_args(mca_coll_han_reduce_args_t * args, mca_coll_task_t * cur_task, void *sbuf, void *rbuf,
                             int seg_count, struct ompi_datatype_t *dtype, struct ompi_op_t *op,
                             int root_up_rank, int root_low_rank,
                             struct ompi_communicator_t *up_comm,
                             struct ompi_communicator_t *low_comm,
                             int num_segments, int cur_seg, int w_rank, int last_seg_count,
                             bool noop, bool is_tmp_rbuf)
{
    args->cur_task = cur_task;
    args->sbuf = sbuf;
    args->rbuf = rbuf;
    args->seg_count = seg_count;
    args->dtype = dtype;
    args->op = op;
    args->root_low_rank = root_low_rank;
    args->root_up_rank = root_up_rank;
    args->up_comm = up_comm;
    args->low_comm = low_comm;
    args->num_segments = num_segments;
    args->cur_seg = cur_seg;
    args->w_rank = w_rank;
    args->last_seg_count = last_seg_count;
    args->noop = noop;
    args->is_tmp_rbuf = is_tmp_rbuf;
}

/*
 * Each segment of the message needs to go though 2 steps to perform MPI_Reduce:
 *     lb: low level (shared-memory or intra-node) reduce.
 *     ub: upper level (inter-node) reduce
 * Hence, in each iteration, there is a combination of collective operations which is called a task.
 *        | seg 0 | seg 1 | seg 2 | seg 3 |
 * iter 0 |  lr   |       |       |       | task: t0, contains lr
 * iter 1 |  ur   |  lr   |       |       | task: t1, contains ur and lr
 * iter 2 |       |  ur   |  lr   |       | task: t1, contains ur and lr
 * iter 3 |       |       |  ur   |  lr   | task: t1, contains ur and lr
 * iter 4 |       |       |       |  ur   | task: t1, contains ur
 */
int
mca_coll_han_reduce_intra(const void *sbuf,
                          void *rbuf,
                          int count,
                          struct ompi_datatype_t *dtype,
                          ompi_op_t* op,
                          int root,
                          struct ompi_communicator_t *comm,
                          mca_coll_base_module_t * module)
{
    mca_coll_han_module_t *han_module = (mca_coll_han_module_t *) module;
    ptrdiff_t extent, lb;
    int seg_count = count, w_rank;
    size_t dtype_size;

    /* No support for non-commutative operations */
    if(!ompi_op_is_commute(op)) {
        OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
                             "han cannot handle reduce with this operation. Fall back on another component\n"));
        goto prev_reduce_intra;
    }

    /* Create the subcommunicators */
    if( OMPI_SUCCESS != mca_coll_han_comm_create(comm, han_module) ) {
        OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
                             "han cannot handle reduce with this communicator. Drop HAN support in this communicator and fall back on another component\n"));
        /* HAN cannot work with this communicator so fallback on all modules */
        HAN_LOAD_FALLBACK_COLLECTIVES(han_module, comm);
        return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
                                          comm, han_module->previous_reduce_module);
    }

    /* Topo must be initialized to know rank distribution which then is used to
     * determine if han can be used */
    mca_coll_han_topo_init(comm, han_module, 2);
    if (han_module->are_ppn_imbalanced) {
        OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
                             "han cannot handle reduce with this communicator (imbalanced). Drop HAN support in this communicator and fall back on another component\n"));
        /* Put back the fallback collective support and call it once. All
         * future calls will then be automatically redirected.
         */
        HAN_LOAD_FALLBACK_COLLECTIVE(han_module, comm, reduce);
        return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
                                          comm, han_module->previous_reduce_module);
    }

    ompi_datatype_get_extent(dtype, &lb, &extent);
    w_rank = ompi_comm_rank(comm);
    ompi_datatype_type_size(dtype, &dtype_size);

    ompi_communicator_t *low_comm;
    ompi_communicator_t *up_comm;

    /* use MCA parameters for now */
    low_comm = han_module->cached_low_comms[mca_coll_han_component.han_reduce_low_module];
    up_comm = han_module->cached_up_comms[mca_coll_han_component.han_reduce_up_module];
    COLL_BASE_COMPUTED_SEGCOUNT(mca_coll_han_component.han_reduce_segsize, dtype_size,
                                seg_count);

    int num_segments = (count + seg_count - 1) / seg_count;
    OPAL_OUTPUT_VERBOSE((20, mca_coll_han_component.han_output,
                         "In HAN seg_count %d count %d num_seg %d\n",
                         seg_count, count, num_segments));

    int *vranks = han_module->cached_vranks;
    int low_rank = ompi_comm_rank(low_comm);
    int low_size = ompi_comm_size(low_comm);
    int up_rank  = ompi_comm_rank(up_comm);

    int root_low_rank;
    int root_up_rank;
    mca_coll_han_get_ranks(vranks, root, low_size, &root_low_rank, &root_up_rank);
    OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
                         "[%d]: root_low_rank %d root_up_rank %d\n", w_rank, root_low_rank,
                         root_up_rank));

    void *tmp_rbuf = rbuf;
    void *tmp_rbuf_to_free = NULL;
    if (low_rank == root_low_rank && root_up_rank != up_rank) {
        /* allocate 2 segments on node leaders that are not the global root */
        tmp_rbuf = malloc(2*extent*seg_count);
        tmp_rbuf_to_free = tmp_rbuf;
    }

    /* Create t0 tasks for the first segment */
    mca_coll_task_t *t0 = OBJ_NEW(mca_coll_task_t);
    /* Setup up t0 task arguments */
    mca_coll_han_reduce_args_t *t = malloc(sizeof(mca_coll_han_reduce_args_t));
    mca_coll_han_set_reduce_args(t, t0, (char *) sbuf, (char *) tmp_rbuf, seg_count, dtype,
                                 op, root_up_rank, root_low_rank, up_comm, low_comm,
                                 num_segments, 0, w_rank, count - (num_segments - 1) * seg_count,
                                 low_rank != root_low_rank, (NULL != tmp_rbuf_to_free));
    /* Init the first task */
    init_task(t0, mca_coll_han_reduce_t0_task, (void *) t);
    issue_task(t0);

    /* Create t1 task */
    mca_coll_task_t *t1 = OBJ_NEW(mca_coll_task_t);
    /* Setup up t1 task arguments */
    t->cur_task = t1;
    /* Init the t1 task */
    init_task(t1, mca_coll_han_reduce_t1_task, (void *) t);
    issue_task(t1);

    while (t->cur_seg <= t->num_segments - 2) {
        /* Create t_next_seg task */
        mca_coll_task_t *t_next_seg = OBJ_NEW(mca_coll_task_t);
        /* Setup up t_next_seg task arguments */
        t->cur_task = t_next_seg;
        if (t->sbuf != MPI_IN_PLACE) {
            t->sbuf = (char *) t->sbuf + extent * t->seg_count;
        }

        if (up_rank == root_up_rank) {
            t->rbuf = (char *) t->rbuf + extent * t->seg_count;
        }
        t->cur_seg = t->cur_seg + 1;
        /* Init the t_next_seg task */
        init_task(t_next_seg, mca_coll_han_reduce_t1_task, (void *) t);
        issue_task(t_next_seg);
    }

    free(t);
    free(tmp_rbuf_to_free);

    return OMPI_SUCCESS;

 prev_reduce_intra:
    return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
                                       comm,
                                       han_module->previous_reduce_module);
}

/* t0 task: issue and wait for the low level reduce of segment 0 */
int mca_coll_han_reduce_t0_task(void *task_args)
{
    mca_coll_han_reduce_args_t *t = (mca_coll_han_reduce_args_t *) task_args;
    OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "[%d]: in t0 %d\n", t->w_rank,
                         t->cur_seg));
    OBJ_RELEASE(t->cur_task);
    ptrdiff_t extent, lb;
    ompi_datatype_get_extent(t->dtype, &lb, &extent);
    t->low_comm->c_coll->coll_reduce((char *) t->sbuf, (char *) t->rbuf, t->seg_count, t->dtype,
                                     t->op, t->root_low_rank, t->low_comm,
                                     t->low_comm->c_coll->coll_reduce_module);
    return OMPI_SUCCESS;
}

/* t1 task */
int mca_coll_han_reduce_t1_task(void *task_args) {
    mca_coll_han_reduce_args_t *t = (mca_coll_han_reduce_args_t *) task_args;
    OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "[%d]: in t1 %d\n", t->w_rank,
                         t->cur_seg));
    OBJ_RELEASE(t->cur_task);
    ptrdiff_t extent, lb;
    int cur_seg = t->cur_seg;
    ompi_datatype_get_extent(t->dtype, &lb, &extent);
    ompi_request_t *ireduce_req = NULL;
    if (!t->noop) {
        int tmp_count = t->seg_count;
        if (cur_seg == t->num_segments - 1 && t->last_seg_count != t->seg_count) {
            tmp_count = t->last_seg_count;
        }
        int up_rank = ompi_comm_rank(t->up_comm);
        /* ur of cur_seg */
        if (up_rank == t->root_up_rank) {
            t->up_comm->c_coll->coll_ireduce(MPI_IN_PLACE, (char *) t->rbuf, tmp_count, t->dtype,
                                             t->op, t->root_up_rank, t->up_comm, &ireduce_req,
                                             t->up_comm->c_coll->coll_ireduce_module);
        } else {
            /* this is a node leader that is not root so alternate between the two allocated segments */
            char *tmp_sbuf = (char*)t->rbuf + (cur_seg % 2)*(extent * t->seg_count);
            t->up_comm->c_coll->coll_ireduce(tmp_sbuf, NULL, tmp_count,
                                             t->dtype, t->op, t->root_up_rank, t->up_comm,
                                             &ireduce_req, t->up_comm->c_coll->coll_ireduce_module);
        }
    }
    /* lr of cur_seg+1 */
    int next_seg = cur_seg + 1;
    if (next_seg <= t->num_segments - 1) {
        int tmp_count = t->seg_count;
        char *tmp_rbuf = NULL;
        char *tmp_sbuf = NULL;
        if (next_seg == t->num_segments - 1 && t->last_seg_count != t->seg_count) {
            tmp_count = t->last_seg_count;
        }
        if (t->is_tmp_rbuf) {
            tmp_rbuf = (char*)t->rbuf + (next_seg % 2)*(extent * t->seg_count);
        } else if (NULL != t->rbuf) {
            tmp_rbuf = (char*)t->rbuf + extent * t->seg_count;
        }

        tmp_sbuf = (t->sbuf == MPI_IN_PLACE) ? MPI_IN_PLACE : (char *)t->sbuf + extent * t->seg_count;

        t->low_comm->c_coll->coll_reduce((char *) tmp_sbuf,
                                         (char *) tmp_rbuf, tmp_count,
                                         t->dtype, t->op, t->root_low_rank, t->low_comm,
                                         t->low_comm->c_coll->coll_reduce_module);

    }
    if (!t->noop && ireduce_req) {
        ompi_request_wait(&ireduce_req, MPI_STATUS_IGNORE);
    }

    return OMPI_SUCCESS;
}

/* In case of non regular situation (imbalanced number of processes per nodes),
 * a fallback is made on the next component that provides a reduce in priority order */
int
mca_coll_han_reduce_intra_simple(const void *sbuf,
                                 void* rbuf,
                                 int count,
                                 struct ompi_datatype_t *dtype,
                                 ompi_op_t *op,
                                 int root,
                                 struct ompi_communicator_t *comm,
                                 mca_coll_base_module_t *module)
{
    int w_rank; /* information about the global communicator */
    int root_low_rank, root_up_rank; /* root ranks for both sub-communicators */
    int ret;
    int *vranks, low_rank, low_size;
    ptrdiff_t rsize, rgap = 0;
    void * tmp_buf;

    mca_coll_han_module_t *han_module = (mca_coll_han_module_t *)module;

    /* No support for non-commutative operations */
    if(!ompi_op_is_commute(op)){
        OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
                             "han cannot handle reduce with this operation. Fall back on another component\n"));
        goto prev_reduce_intra;
    }

    /* Create the subcommunicators */
    if( OMPI_SUCCESS != mca_coll_han_comm_create(comm, han_module) ) {
        OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
                             "han cannot handle reduce with this communicator. Drop HAN support in this communicator and fall back on another component\n"));
        /* HAN cannot work with this communicator so fallback on all collectives */
        HAN_LOAD_FALLBACK_COLLECTIVES(han_module, comm);
        return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
                                          comm, han_module->previous_reduce_module);
    }

    /* Topo must be initialized to know rank distribution which then is used to
     * determine if han can be used */
    mca_coll_han_topo_init(comm, han_module, 2);
    if (han_module->are_ppn_imbalanced) {
        OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
                             "han cannot handle reduce with this communicator (imbalanced). Drop HAN support in this communicator and fall back on another component\n"));
        /* Put back the fallback collective support and call it once. All
         * future calls will then be automatically redirected.
         */
        HAN_LOAD_FALLBACK_COLLECTIVE(han_module, comm, reduce);
        return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
                                          comm, han_module->previous_reduce_module);
    }

    ompi_communicator_t *low_comm =
         han_module->cached_low_comms[mca_coll_han_component.han_reduce_low_module];
    ompi_communicator_t *up_comm =
         han_module->cached_up_comms[mca_coll_han_component.han_reduce_up_module];

    /* Get the 'virtual ranks' mapping corresponding to the communicators */
    vranks = han_module->cached_vranks;
    w_rank = ompi_comm_rank(comm);
    low_rank = ompi_comm_rank(low_comm);

    low_size = ompi_comm_size(low_comm);
    /* Get root ranks for low and up comms */
    mca_coll_han_get_ranks(vranks, root, low_size, &root_low_rank, &root_up_rank);

    if (root_low_rank == low_rank && w_rank != root) {
        rsize = opal_datatype_span(&dtype->super, (int64_t)count, &rgap);
        tmp_buf = malloc(rsize);
        if (NULL == tmp_buf) {
            return OMPI_ERROR;
        }
    } else {
        /* global root rbuf is valid, local non-root do not need buffers */
        tmp_buf = rbuf;
    }
    /* No need to handle MPI_IN_PLACE: only the global root may ask for it and
     * it is ok to use it for intermediary reduces since it is also a local root*/

    /* Low_comm reduce */
    ret = low_comm->c_coll->coll_reduce((char *)sbuf, (char *)tmp_buf,
                count, dtype, op, root_low_rank,
                low_comm, low_comm->c_coll->coll_reduce_module);
    if (OPAL_UNLIKELY(OMPI_SUCCESS != ret)){
        if (root_low_rank == low_rank && w_rank != root){
            free(tmp_buf);
        }
        OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
                             "HAN/REDUCE: low comm reduce failed. "
                             "Falling back to another component\n"));
        goto prev_reduce_intra;
    }

    /* Up_comm reduce */
    if (root_low_rank == low_rank ){
        if(w_rank != root){
            ret = up_comm->c_coll->coll_reduce((char *)tmp_buf, NULL,
                        count, dtype, op, root_up_rank,
                        up_comm, up_comm->c_coll->coll_reduce_module);
            free(tmp_buf);
        } else {
            /* Take advantage of any optimisation made for IN_PLACE
             * communications */
            ret = up_comm->c_coll->coll_reduce(MPI_IN_PLACE, (char *)tmp_buf,
                        count, dtype, op, root_up_rank,
                        up_comm, up_comm->c_coll->coll_reduce_module);
        }
        if (OPAL_UNLIKELY(OMPI_SUCCESS != ret)){
            OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output,
                                 "HAN/REDUCE: low comm reduce failed.\n"));
            return ret;
        }

    }
    return OMPI_SUCCESS;

 prev_reduce_intra:
    return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root,
                                       comm, han_module->previous_reduce_module);
}


/* Find a fallback on reproducible algorithm
 * use tuned or basic or if impossible whatever available
 */
int
mca_coll_han_reduce_reproducible_decision(struct ompi_communicator_t *comm,
                                          mca_coll_base_module_t *module)
{
    int w_rank = ompi_comm_rank(comm);
    mca_coll_han_module_t *han_module = (mca_coll_han_module_t *)module;

    /* populate previous modules_storage*/
    mca_coll_han_get_all_coll_modules(comm, han_module);

    /* try availability of reproducible modules */
    int fallbacks[] = {TUNED, BASIC};
    int fallbacks_len = sizeof(fallbacks) / sizeof(*fallbacks);
    int i;
    for (i=0; i<fallbacks_len; i++) {
        int fallback = fallbacks[i];
        mca_coll_base_module_t *fallback_module
            = han_module->modules_storage.modules[fallback].module_handler;
        if (fallback_module != NULL && fallback_module->coll_reduce != NULL) {
            if (0 == w_rank) {
                opal_output_verbose(30, mca_coll_han_component.han_output,
                                    "coll:han:reduce_reproducible: "
                                    "fallback on %s\n",
                                    ompi_coll_han_available_components[fallback].component_name);
            }
            han_module->reproducible_reduce_module = fallback_module;
            han_module->reproducible_reduce = fallback_module->coll_reduce;
            return OMPI_SUCCESS;
        }
    }
   /* fallback of the fallback */
    if (0 == w_rank) {
        opal_output_verbose(5, mca_coll_han_component.han_output,
                            "coll:han:reduce_reproducible_decision: "
                            "no reproducible fallback\n");
    }
    han_module->reproducible_reduce_module =
        han_module->previous_reduce_module;
    han_module->reproducible_reduce = han_module->previous_reduce;
    return  OMPI_SUCCESS;
}


/* Fallback on reproducible algorithm */
int
mca_coll_han_reduce_reproducible(const void *sbuf,
                                 void *rbuf,
                                  int count,
                                  struct ompi_datatype_t *dtype,
                                  struct ompi_op_t *op,
                                  int root,
                                  struct ompi_communicator_t *comm,
                                  mca_coll_base_module_t *module)
{
    mca_coll_han_module_t *han_module = (mca_coll_han_module_t *)module;
    return han_module->reproducible_reduce(sbuf, rbuf, count, dtype,
                                           op, root, comm,
                                           han_module
                                           ->reproducible_reduce_module);
}