1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/*
* Copyright (c) 2018-2021 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2020-2021 Bull S.A.S. All rights reserved.
*
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/**
* @file
*
* This file provides information about current run rank mapping in the shape
* of a integer array where each rank will provides a set of contiguous integer :
* its rank and its location at the different topological levels (from the
* highest to the lowest).
* At the end, the order for these data chunks uses the topological level as keys:
* the ranks are sorted first by the top level, then by the next level, ... etc.
*
* Warning: this is not for the faint of heart -- don't even bother
* reading this source code if you don't have a strong understanding
* of nested data structures and pointer math (remember that
* associativity and order of C operations is *critical* in terms of
* pointer math!).
*/
#include "ompi_config.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif /* HAVE_UNISTD_H */
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif /* HAVE_STDLIB_H */
#include "mpi.h"
#include "coll_han.h"
#if OPAL_ENABLE_DEBUG
static void
mca_coll_han_topo_print(int *topo,
struct ompi_communicator_t *comm,
int num_topo_level)
{
int rank = ompi_comm_rank(comm);
int size = ompi_comm_size(comm);
if (rank == 0) {
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "[%d]: Han topo: ", rank));
for( int i = 0; i < size*num_topo_level; i++ ) {
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "%d ", topo[i]));
}
OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "\n"));
}
}
#endif /* OPAL_ENABLE_DEBUG */
/**
* Topology initialization phase
* Called each time a collective that needs buffer reordering is called
*
* @param num_topo_level (IN) Number of the topological levels
*/
int*
mca_coll_han_topo_init(struct ompi_communicator_t *comm,
mca_coll_han_module_t *han_module,
int num_topo_level)
{
if ( NULL != han_module->cached_topo ) {
return han_module->cached_topo;
}
ompi_communicator_t *up_comm, *low_comm;
ompi_request_t *request = MPI_REQUEST_NULL;
int *my_low_rank_map = NULL;
int *ranks_map = NULL;
int size = ompi_comm_size(comm);
if (NULL != han_module->cached_up_comms) {
up_comm = han_module->cached_up_comms[0];
low_comm = han_module->cached_low_comms[0];
} else {
up_comm = han_module->sub_comm[INTER_NODE];
low_comm = han_module->sub_comm[INTRA_NODE];
}
assert(up_comm != NULL && low_comm != NULL);
int low_rank = ompi_comm_rank(low_comm);
int low_size = ompi_comm_size(low_comm);
int *topo = (int *)malloc(sizeof(int) * size * num_topo_level);
int is_imbalanced = 1;
int ranks_non_consecutive = 0;
/* node leaders translate the node-local ranks to global ranks and check whether they are placed consecutively */
if (0 == low_rank) {
my_low_rank_map = malloc(sizeof(int)*low_size);
for (int i = 0; i < low_size; ++i) {
topo[i] = i;
}
ompi_group_translate_ranks(low_comm->c_local_group, low_size, topo,
comm->c_local_group, my_low_rank_map);
/* check if ranks are consecutive */
int rank = my_low_rank_map[0] + 1;
for (int i = 1; i < low_size; ++i, ++rank) {
if (my_low_rank_map[i] != rank) {
ranks_non_consecutive = 1;
break;
}
}
int reduce_vals[] = {ranks_non_consecutive, low_size, -low_size};
up_comm->c_coll->coll_allreduce(MPI_IN_PLACE, &reduce_vals, 3,
MPI_INT, MPI_MAX, up_comm,
up_comm->c_coll->coll_allreduce_module);
/* is the distribution of processes balanced per node? */
is_imbalanced = (reduce_vals[1] == -reduce_vals[2]) ? 0 : 1;
ranks_non_consecutive = reduce_vals[0];
if ( ranks_non_consecutive && !is_imbalanced ) {
/* kick off up_comm allgather to collect non-consecutive rank information at node leaders */
ranks_map = malloc(sizeof(int)*size);
up_comm->c_coll->coll_iallgather(my_low_rank_map, low_size, MPI_INT,
ranks_map, low_size, MPI_INT, up_comm, &request,
up_comm->c_coll->coll_iallgather_module);
}
}
/* broadcast balanced and consecutive properties from node leaders to remaining ranks */
int bcast_vals[] = {is_imbalanced, ranks_non_consecutive};
low_comm->c_coll->coll_bcast(bcast_vals, 2, MPI_INT, 0,
low_comm, low_comm->c_coll->coll_bcast_module);
is_imbalanced = bcast_vals[0];
ranks_non_consecutive = bcast_vals[1];
/* error out if the rank distribution is not balanced */
if (is_imbalanced) {
assert(MPI_REQUEST_NULL == request);
han_module->are_ppn_imbalanced = true;
free(topo);
if( NULL != my_low_rank_map ) free(my_low_rank_map);
if( NULL != ranks_map ) free(ranks_map);
return NULL;
}
han_module->are_ppn_imbalanced = false;
if (!ranks_non_consecutive) {
/* fast-path: all ranks are consecutive and balanced so fill topology locally */
for (int i = 0; i < size; ++i) {
topo[2*i] = (i/low_size); // node leader is node ID
topo[2*i+1] = i;
}
han_module->is_mapbycore = true;
} else {
han_module->is_mapbycore = false;
/*
* Slow path: gather global-to-node-local rank mappings at node leaders
*
* The topology will contain a mapping from global consecutive positions
* to ranks in the communicator.
*
* ex: 4 ranks executing on 2 nodes, mapped by node
* ranks 0 and 2 on hid0
* ranks 1 and 3 on hid1
* On entry the topo array looks like
* hid0 0 hid1 1 hid0 2 hid1 3
* After the sort:
* hid0 0 hid0 2 hid1 1 hid1 3
*/
if (0 == low_rank) {
ompi_request_wait(&request, MPI_STATUS_IGNORE);
/* fill topology */
for (int i = 0; i < size; ++i) {
topo[2*i] = ranks_map[(i/low_size)*low_size]; // node leader is node ID
topo[2*i+1] = ranks_map[i];
}
free(ranks_map);
}
}
/* broadcast topology from node leaders to remaining ranks */
low_comm->c_coll->coll_bcast(topo, num_topo_level*size, MPI_INT, 0,
low_comm, low_comm->c_coll->coll_bcast_module);
free(my_low_rank_map);
han_module->cached_topo = topo;
#if OPAL_ENABLE_DEBUG
mca_coll_han_topo_print(topo, comm, num_topo_level);
#endif /* OPAL_ENABLE_DEBUG */
return topo;
}
|