File: topo_treematch_dist_graph_create.c

package info (click to toggle)
openmpi 5.0.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 202,312 kB
  • sloc: ansic: 612,441; makefile: 42,495; sh: 11,230; javascript: 9,244; f90: 7,052; java: 6,404; perl: 5,154; python: 1,856; lex: 740; fortran: 61; cpp: 20; tcl: 12
file content (982 lines) | stat: -rw-r--r-- 47,454 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
 * Copyright (c) 2011-2023 The University of Tennessee and The University
 *                         of Tennessee Research Foundation.  All rights
 *                         reserved.
 * Copyright (c) 2011-2018 Inria.  All rights reserved.
 * Copyright (c) 2011-2018 Bordeaux Polytechnic Institute
 * Copyright (c) 2015-2019 Intel, Inc.  All rights reserved.
 * Copyright (c) 2015-2017 Research Organization for Information Science
 *                         and Technology (RIST). All rights reserved.
 * Copyright (c) 2016      Los Alamos National Security, LLC. All rights
 *                         reserved.
 * Copyright (c) 2017      Cisco Systems, Inc.  All rights reserved
 * Copyright (c) 2016-2017 IBM Corporation. All rights reserved.
 * $COPYRIGHT$
 *
 * Additional copyrights may follow
 *
 * $HEADER$
 */

#include "ompi_config.h"

#include "opal/constants.h"
#include "opal/mca/hwloc/base/base.h"

#include "ompi/mca/topo/treematch/topo_treematch.h"
#include <treematch.h>
#include <tm_mapping.h>
#include "ompi/mca/topo/base/base.h"

#include "ompi/communicator/communicator.h"
#include "ompi/info/info.h"

#include "ompi/mca/pml/pml.h"

#include "opal/mca/pmix/pmix-internal.h"

/* #define __DEBUG__ 1  */

/**
 * This function is a allreduce between all processes to detect for oversubscription.
 * On each node, the local_procs will be a different array, that contains only the
 * local processes. Thus, that process will compute the node oversubscription and will
 * bring this value to the operation, while every other process on the node will
 * contribute 0.
 * Doing an AllReduce might be an overkill for this situation, but it should remain
 * more scalable than a star reduction (between the roots of each node (nodes_roots),
 * followed by a bcast to all processes.
 */
static int check_oversubscribing(int rank,
                                 int num_nodes,
                                 int num_objs_in_node,
                                 int num_procs_in_node,
                                 int *nodes_roots,
                                 int *local_procs,
                                 ompi_communicator_t *comm_old)
{
    int oversubscribed = 0, local_oversub = 0, err;

    /* Only a single process per node, the local root, compute the oversubscription condition */
    if (rank == local_procs[0])
        if(num_objs_in_node < num_procs_in_node)
            local_oversub = 1;


    if (OMPI_SUCCESS != (err = comm_old->c_coll->coll_allreduce(&local_oversub, &oversubscribed, 1, MPI_INT,
                                                                MPI_SUM, comm_old, comm_old->c_coll->coll_allreduce_module)))
        return err;

    return oversubscribed;
}

#ifdef __DEBUG__
static void dump_int_array( int level, int output_id, char* prolog, char* line_prolog, int* array, size_t length )
{
    size_t i;
    if( -1 == output_id ) return;

    opal_output_verbose(level, output_id, "%s : ", prolog);
    for(i = 0; i < length ; i++)
        opal_output_verbose(level, output_id, "%s [%lu:%i] ", line_prolog, i, array[i]);
    opal_output_verbose(level, output_id, "\n");
}
static void dump_double_array( int level, int output_id, char* prolog, char* line_prolog, double* array, size_t length )
{
    size_t i;

    if( -1 == output_id ) return;
    opal_output_verbose(level, output_id, "%s : ", prolog);
    for(i = 0; i < length ; i++)
        opal_output_verbose(level, output_id, "%s [%lu:%lf] ", line_prolog, i, array[i]);
    opal_output_verbose(level, output_id, "\n");
}
#endif

int mca_topo_treematch_dist_graph_create(mca_topo_base_module_t* topo_module,
                                         ompi_communicator_t *comm_old,
                                         int n, const int nodes[],
                                         const int degrees[], const int targets[],
                                         const int weights[],
                                         struct opal_info_t *info, int reorder,
                                         ompi_communicator_t **newcomm)
{
    int err;

    if (OMPI_SUCCESS != (err = mca_topo_base_dist_graph_distribute(topo_module, comm_old, n, nodes,
                                                                   degrees, targets, weights,
                                                                   &(topo_module->mtc.dist_graph))))
        return err;

    if(!reorder) {  /* No reorder. Create a new communicator, then   */
                    /* jump out to attach the dist_graph and return */
    fallback:

        if( OMPI_SUCCESS == (err = ompi_comm_create(comm_old,
                                                    comm_old->c_local_group,
                                                    newcomm))){
            /* Attach the dist_graph to the newly created communicator */
            (*newcomm)->c_flags        |= OMPI_COMM_DIST_GRAPH;
            (*newcomm)->c_topo          = topo_module;
            (*newcomm)->c_topo->reorder = reorder;
        }
        return err;
    }  /* reorder == yes */

    mca_topo_base_comm_dist_graph_2_2_0_t *topo = NULL;
    ompi_proc_t *proc = NULL;
    MPI_Request  *reqs = NULL;
    hwloc_cpuset_t set = NULL;
    hwloc_obj_t object, root_obj;
    hwloc_obj_t *tracker = NULL;
    double *local_pattern = NULL;
    int *vpids, *colors = NULL;
    int *lindex_to_grank = NULL;
    int *nodes_roots = NULL, *k = NULL;
    int *localrank_to_objnum  = NULL;
    int depth = 0, effective_depth = 0, obj_rank = -1;
    int num_objs_in_node = 0, num_pus_in_node = 0;
    int numlevels = 0, num_nodes = 0, num_procs_in_node = 0;
    int rank, size, newrank = -1, hwloc_err, i, j, idx;
    int oversubscribing_objs = 0, oversubscribed_pus = 0;
    uint32_t val, *pval;

    /* We need to know if the processes are bound. We assume all
     * processes are in the same state: all bound or none. */
    if (OPAL_SUCCESS != opal_hwloc_base_get_topology()) {
        goto fallback;
    }
    root_obj = hwloc_get_root_obj(opal_hwloc_topology);
    if (NULL == root_obj) goto fallback;

    topo = topo_module->mtc.dist_graph;
    rank = ompi_comm_rank(comm_old);
    size = ompi_comm_size(comm_old);

    OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                         "Process rank is : %i\n",rank));
    /**
     * In order to decrease the number of loops let's use a trick:
     * build the lindex_to_grank in the vpids array, and only allocate
     * it upon completion of the most costly loop.
     */
    vpids = (int *)malloc(size * sizeof(int));
    colors = (int *)malloc(size * sizeof(int));
    for(i = 0 ; i < size ; i++) {
        proc = ompi_group_peer_lookup(comm_old->c_local_group, i);
        if (( i == rank ) ||
            (OPAL_PROC_ON_LOCAL_NODE(proc->super.proc_flags)))
            vpids[num_procs_in_node++] = i;

        pval = &val;
        OPAL_MODEX_RECV_VALUE(err, PMIX_NODEID, &(proc->super.proc_name), &pval, PMIX_UINT32);
        if( PMIX_SUCCESS != err ) {
            opal_output(0, "Unable to extract peer %s nodeid from the modex.\n",
                        OMPI_NAME_PRINT(&(proc->super.proc_name)));
            colors[i] = -1;
            continue;
        }
        colors[i] = (int)val;
    }
    lindex_to_grank = (int *)malloc(num_procs_in_node * sizeof(int));
    memcpy(lindex_to_grank, vpids, num_procs_in_node * sizeof(int));
    memcpy(vpids, colors, size * sizeof(int));

#ifdef __DEBUG__
    if ( 0 == rank ) {
        dump_int_array(10, ompi_topo_base_framework.framework_output,
                       "lindex_to_grank : ", "", lindex_to_grank, num_procs_in_node);
        dump_int_array(10, ompi_topo_base_framework.framework_output,
                       "Vpids : ", "", colors, size);
    }
#endif
    /* clean-up dupes in the array */
    for(i = 0; i < size ; i++) {
        if ( -1 == vpids[i] ) continue;
        num_nodes++;  /* compute number of nodes */
        for(j = i+1; j < size; j++)
            if( vpids[i] == vpids[j] )
                vpids[j] = -1;
    }
    if( 0 == num_nodes ) {
        /* No useful info has been retrieved from the runtime. Fallback
         * and create a duplicate of the original communicator */
        free(vpids);
        free(colors);
        free(lindex_to_grank);
        goto fallback; /* return with success */
    }
    /* compute local roots ranks in comm_old */
    /* Only the global root needs to do this */
    if(0 == rank) {
        nodes_roots = (int *)calloc(num_nodes, sizeof(int));
        for(i = idx = 0; i < size; i++)
            if( vpids[i] != -1 )
                nodes_roots[idx++] = i;
        OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                             "num nodes is %i\n", num_nodes));
#ifdef __DEBUG__
        dump_int_array(10, ompi_topo_base_framework.framework_output,
                       "Root nodes are :\n", "root ", nodes_roots, num_nodes);
#endif
    }
    free(vpids);

    /* if cpubind returns an error, it will be full anyway */
    set = hwloc_bitmap_alloc_full();
    hwloc_get_cpubind(opal_hwloc_topology, set, 0);
    num_pus_in_node = hwloc_get_nbobjs_by_type(opal_hwloc_topology, HWLOC_OBJ_PU);

    /**
     * In all situations (including heterogeneous environments) all processes must execute
     * all the calls that involve collective communications, so we have to lay the logic
     * accordingly.
     */

    if(hwloc_bitmap_isincluded(root_obj->cpuset,set)) { /* processes are not bound on the machine */
        if (0 == rank)
            OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                 ">>>>>>>>>>>>> Process Not bound <<<<<<<<<<<<<<<\n"));

        /* we try to bind to cores or above objects if enough are present */
        /* Not sure that cores are present in ALL nodes */
        depth = hwloc_get_type_or_above_depth(opal_hwloc_topology, HWLOC_OBJ_CORE);
        num_objs_in_node = hwloc_get_nbobjs_by_depth(opal_hwloc_topology, depth);
    } else {    /* the processes are already bound */
        object = hwloc_get_obj_covering_cpuset(opal_hwloc_topology, set);
        obj_rank = object->logical_index;
        effective_depth = object->depth;
        num_objs_in_node = hwloc_get_nbobjs_by_depth(opal_hwloc_topology, effective_depth);
    }
    if( (0 == num_objs_in_node) || (0 == num_pus_in_node) ) {  /* deal with bozo cases: COVERITY 1418505 */
        free(colors);
        free(lindex_to_grank);
        goto fallback; /* return with success */
    }
    /* Check for oversubscribing */
    oversubscribing_objs = check_oversubscribing(rank, num_nodes,
                                                 num_objs_in_node, num_procs_in_node,
                                                 nodes_roots, lindex_to_grank, comm_old);

    if(oversubscribing_objs) {
        if(hwloc_bitmap_isincluded(root_obj->cpuset, set)) { /* processes are not bound on the machine */
            OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                 "Oversubscribing OBJ/CORES resources => Trying to use PUs \n"));

            oversubscribed_pus = check_oversubscribing(rank, num_nodes,
                                                       num_pus_in_node, num_procs_in_node,
                                                       nodes_roots, lindex_to_grank, comm_old);
            /* Update the data used to compute the correct binding */
            if (!oversubscribed_pus) {
                obj_rank = ompi_process_info.my_local_rank%num_pus_in_node;
                effective_depth = hwloc_topology_get_depth(opal_hwloc_topology) - 1;
                num_objs_in_node = num_pus_in_node;
                OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                     "Process %i not bound : binding on PU#%i \n", rank, obj_rank));
            }
        } else {
            /* Bound processes will participate with the same data as before */
            oversubscribed_pus = check_oversubscribing(rank, num_nodes,
                                                       num_objs_in_node, num_procs_in_node,
                                                       nodes_roots, lindex_to_grank, comm_old);
        }
    }

    if( !oversubscribing_objs && !oversubscribed_pus ) {
        if( hwloc_bitmap_isincluded(root_obj->cpuset, set) ) { /* processes are not bound on the machine */
            obj_rank = ompi_process_info.my_local_rank%num_objs_in_node;
            effective_depth = depth;
            object = hwloc_get_obj_by_depth(opal_hwloc_topology, effective_depth, obj_rank);
            if( NULL == object) {
                free(colors);
                free(lindex_to_grank);
                hwloc_bitmap_free(set);
                goto fallback;  /* return with success */
            }

            hwloc_bitmap_copy(set, object->cpuset);
            hwloc_bitmap_singlify(set); /* we don't want the process to move */
            hwloc_err = hwloc_set_cpubind(opal_hwloc_topology, set, 0);
            if( -1 == hwloc_err) {
                /* This is a local issue. Either we agree with the rest of the processes to stop the
                 * reordering or we have to complete the entire process. Let's complete.
                 */
                OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                     "Process %i failed to bind on OBJ#%i \n", rank, obj_rank));
            } else
                OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                     "Process %i not bound : binding on OBJ#%i \n",rank, obj_rank));
        } else {
            OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                 "Process %i bound  on OBJ #%i \n"
                                 "=====> Num obj in node : %i | num pus in node : %i\n",
                                 rank, obj_rank,
                                 num_objs_in_node, num_pus_in_node));
        }
    } else {
        OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                             "Oversubscribing PUs resources => Rank Reordering Impossible \n"));
        free(colors);
        free(lindex_to_grank);
        hwloc_bitmap_free(set);
        goto fallback;  /* return with success */
    }

    reqs = (MPI_Request *)calloc(num_procs_in_node-1, sizeof(MPI_Request));
    if( rank == lindex_to_grank[0] ) {  /* local leader cleans the hierarchy */
        int array_size = effective_depth + 1;
        int *myhierarchy = (int *)calloc(array_size, sizeof(int));

        numlevels = 1;
        myhierarchy[0] = hwloc_get_nbobjs_by_depth(opal_hwloc_topology, 0);
        for (i = 1; i < array_size ; i++) {
            myhierarchy[i] = hwloc_get_nbobjs_by_depth(opal_hwloc_topology, i);
            OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                 "hierarchy[%i] = %i\n", i, myhierarchy[i]));
            if ((myhierarchy[i] != 0) && (myhierarchy[i] != myhierarchy[i-1]))
                numlevels++;
        }

        tracker = (hwloc_obj_t *)calloc(numlevels, sizeof(hwloc_obj_t));
        for(idx = 0, i = 1; i < array_size; i++) {
            if(myhierarchy[i] != myhierarchy[i-1])
                tracker[idx++] = hwloc_get_obj_by_depth(opal_hwloc_topology, i-1, 0);
        }
        tracker[idx] = hwloc_get_obj_by_depth(opal_hwloc_topology, effective_depth, 0);
        free(myhierarchy);

        OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                             ">>>>>>>>>>>>>>>>>>>>> Effective depth is : %i (total depth %i)| num_levels %i\n",
                             effective_depth, hwloc_topology_get_depth(opal_hwloc_topology), numlevels));
        for(i = 0 ; i < numlevels ; i++) {
            OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                 "tracker[%i] : arity %i | depth %i\n",
                                 i, tracker[i]->arity, tracker[i]->depth));
        }
        /* get the obj number */
        localrank_to_objnum = (int *)calloc(num_procs_in_node, sizeof(int));
        localrank_to_objnum[0] = obj_rank;

        for(i = 1;  i < num_procs_in_node; i++) {
            if (OMPI_SUCCESS != ( err = MCA_PML_CALL(irecv(&localrank_to_objnum[i], 1, MPI_INT,
                                                           lindex_to_grank[i], -111, comm_old, &reqs[i-1])))) {
                free(reqs); reqs = NULL;
                goto release_and_return;
            }
        }
        if (OMPI_SUCCESS != ( err = ompi_request_wait_all(num_procs_in_node-1,
                                                          reqs, MPI_STATUSES_IGNORE))) {
            free(reqs); reqs = NULL;
            goto release_and_return;
        }
    } else {
        /* sending my core number to my local master on the node */
        if (OMPI_SUCCESS != (err = MCA_PML_CALL(send(&obj_rank, 1, MPI_INT, lindex_to_grank[0],
                                                     -111, MCA_PML_BASE_SEND_STANDARD, comm_old)))) {
            free(reqs); reqs = NULL;
            goto release_and_return;
        }
    }
    free(reqs); reqs = NULL;

    /* Centralized Reordering */
    if (0 == mca_topo_treematch_component.reorder_mode) {
        int *obj_mapping = NULL;
        int num_objs_total = 0;

        /* Gather comm pattern
         * If weights have been provided take them in account. Otherwise rely
         * solely on HWLOC information.
         */
        if( 0 == rank ) {

            OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                 "========== Centralized Reordering ========= \n"));
            local_pattern = (double *)calloc(size*size,sizeof(double));
        } else {
            local_pattern = (double *)calloc(size,sizeof(double));
        }
        if( true == topo->weighted ) {
            for(i = 0; i < topo->indegree ; i++)
                local_pattern[topo->in[i]] += topo->inw[i];
            for(i = 0; i < topo->outdegree ; i++)
                local_pattern[topo->out[i]] += topo->outw[i];
        }
        err = comm_old->c_coll->coll_gather( (0 == rank ? MPI_IN_PLACE : local_pattern), size, MPI_DOUBLE,
                                             local_pattern, size, MPI_DOUBLE,  /* ignored on non-root */
                                             0, comm_old, comm_old->c_coll->coll_gather_module);
        if (OMPI_SUCCESS != err) {
            goto release_and_return;
        }

        if( rank == lindex_to_grank[0] ) {
            tm_topology_t *tm_topology = NULL;
            int *obj_to_rank_in_comm = NULL;
            int *hierarchies = NULL;
            int  min;

            /* create a table that derives the rank in comm_old from the object number */
            obj_to_rank_in_comm = (int *)malloc(num_objs_in_node*sizeof(int));
            for(i = 0 ; i < num_objs_in_node ; i++) {
                obj_to_rank_in_comm[i] = -1;
                object = hwloc_get_obj_by_depth(opal_hwloc_topology, effective_depth, i);
                for( j = 0; j < num_procs_in_node ; j++ )
                    if(localrank_to_objnum[j] == (int)(object->logical_index)) {
                        obj_to_rank_in_comm[i] = lindex_to_grank[j];
                        break;
                    }
            }

            /* the global master gathers info from local_masters */
            if ( 0 == rank ) {
                if ( num_nodes > 1 ) {
                    int *objs_per_node = NULL, displ;

                    objs_per_node = (int *)calloc(num_nodes, sizeof(int));
                    reqs = (MPI_Request *)calloc(num_nodes-1, sizeof(MPI_Request));
                    objs_per_node[0] = num_objs_in_node;
                    for(i = 1; i < num_nodes ; i++)
                        if (OMPI_SUCCESS != ( err = MCA_PML_CALL(irecv(objs_per_node + i, 1, MPI_INT,
                                                                       nodes_roots[i], -112, comm_old, &reqs[i-1])))) {
                            free(obj_to_rank_in_comm);
                            free(objs_per_node);
                            goto release_and_return;
                        }

                    if (OMPI_SUCCESS != ( err = ompi_request_wait_all(num_nodes - 1,
                                                                      reqs, MPI_STATUSES_IGNORE))) {
                        free(objs_per_node);
                        goto release_and_return;
                    }

                    for(i = 0; i < num_nodes; i++)
                        num_objs_total += objs_per_node[i];
                    obj_mapping = (int *)malloc(num_objs_total*sizeof(int));
                    for(i = 0; i < num_objs_total; i++)
                        obj_mapping[i] = -1;

                    memcpy(obj_mapping, obj_to_rank_in_comm, objs_per_node[0]*sizeof(int));
                    displ = objs_per_node[0];
                    for(i = 1; i < num_nodes ; i++) {
                        if (OMPI_SUCCESS != ( err = MCA_PML_CALL(irecv(obj_mapping + displ, objs_per_node[i], MPI_INT,
                                                                       nodes_roots[i], -113, comm_old, &reqs[i-1])))) {
                            free(obj_to_rank_in_comm);
                            free(objs_per_node);
                            free(obj_mapping);
                            goto release_and_return;
                        }
                        displ += objs_per_node[i];
                    }
                    if (OMPI_SUCCESS != ( err = ompi_request_wait_all(num_nodes - 1,
                                                                      reqs, MPI_STATUSES_IGNORE))) {
                        free(obj_to_rank_in_comm);
                        free(objs_per_node);
                        free(obj_mapping);
                        goto release_and_return;
                    }
                    free(objs_per_node);
                } else {
                    /* if num_nodes == 1, then it's easy to get the obj mapping */
                    num_objs_total = num_objs_in_node;
                    obj_mapping = (int *)calloc(num_objs_total, sizeof(int));
                    memcpy(obj_mapping, obj_to_rank_in_comm, num_objs_total*sizeof(int));
                }
#ifdef __DEBUG__
                dump_int_array(10, ompi_topo_base_framework.framework_output,
                               "Obj mapping : ", "", obj_mapping, num_objs_total );
#endif
            } else {
                if ( num_nodes > 1 ) {
                    if (OMPI_SUCCESS != (err = MCA_PML_CALL(send(&num_objs_in_node, 1, MPI_INT,
                                                                 0, -112, MCA_PML_BASE_SEND_STANDARD, comm_old)))) {
                        free(obj_to_rank_in_comm);
                        goto release_and_return;
                    }
                    if (OMPI_SUCCESS != (err = MCA_PML_CALL(send(obj_to_rank_in_comm, num_objs_in_node, MPI_INT,
                                                                 0, -113, MCA_PML_BASE_SEND_STANDARD, comm_old)))) {
                        free(obj_to_rank_in_comm);
                        goto release_and_return;
                    }
                }
            }
            free(obj_to_rank_in_comm);

            assert(numlevels < TM_MAX_LEVELS);
            if( 0 == rank ) {
                hierarchies = (int *)malloc(num_nodes*(TM_MAX_LEVELS+1)*sizeof(int));
            } else {
                hierarchies = (int *)malloc((TM_MAX_LEVELS+1)*sizeof(int));
            }

            hierarchies[0] = numlevels;

            for(i = 0 ; i < hierarchies[0]; i++)
                hierarchies[i+1] = tracker[i]->arity;
            for(; i < (TM_MAX_LEVELS+1); i++)  /* fill up everything else with 0 */
                hierarchies[i] = 0;

            /* gather hierarchies iff more than 1 node! */
            if ( num_nodes > 1 ) {
                if( rank != 0 ) {
                    if (OMPI_SUCCESS != (err = MCA_PML_CALL(send(hierarchies,(TM_MAX_LEVELS+1), MPI_INT, 0,
                                                                 -114, MCA_PML_BASE_SEND_STANDARD, comm_old)))) {
                        free(hierarchies);
                        goto release_and_return;
                    }
                } else {
                    for(i = 1; i < num_nodes ; i++)
                        if (OMPI_SUCCESS != ( err = MCA_PML_CALL(irecv(hierarchies+i*(TM_MAX_LEVELS+1), (TM_MAX_LEVELS+1), MPI_INT,
                                                                       nodes_roots[i], -114, comm_old, &reqs[i-1])))) {
                            free(obj_mapping);
                            free(hierarchies);
                            goto release_and_return;
                        }
                    if (OMPI_SUCCESS != ( err = ompi_request_wait_all(num_nodes - 1,
                                                                      reqs, MPI_STATUSES_IGNORE))) {
                        free(obj_mapping);
                        free(hierarchies);
                        goto release_and_return;
                    }
                    free(reqs); reqs = NULL;
                }
            }

            if ( 0 == rank ) {
                tm_tree_t *comm_tree = NULL;
                tm_solution_t *sol = NULL;
                tm_affinity_mat_t *aff_mat = NULL;
                double **comm_pattern = NULL;

#ifdef __DEBUG__
                dump_int_array(10, ompi_topo_base_framework.framework_output,
                               "hierarchies : ", "", hierarchies, num_nodes*(TM_MAX_LEVELS+1));
#endif
                tm_topology = (tm_topology_t *)malloc(sizeof(tm_topology_t));
                tm_topology->nb_levels = hierarchies[0];

                /* extract min depth */
                for(i = 1 ; i < num_nodes ; i++)
                    if (hierarchies[i*(TM_MAX_LEVELS+1)] < tm_topology->nb_levels)
                        tm_topology->nb_levels = hierarchies[i*(TM_MAX_LEVELS+1)];

                /* Crush levels in hierarchies too long (ie > tm_topology->nb_levels)*/
                for(i = 0; i < num_nodes ; i++) {
                    int *base_ptr = hierarchies + i*(TM_MAX_LEVELS+1);
                    int  suppl = *base_ptr - tm_topology->nb_levels;
                    for(j = 1 ; j <= suppl ; j++)
                        *(base_ptr + tm_topology->nb_levels) *= *(base_ptr + tm_topology->nb_levels + j);
                }
                if( num_nodes > 1) {
                    /* We aggregate all topos => +1 level!*/
                    tm_topology->nb_levels += 1;
                    tm_topology->arity = (int *)calloc(tm_topology->nb_levels, sizeof(int));
                    tm_topology->arity[0] = num_nodes;
                    for(i = 1; i < tm_topology->nb_levels; i++) {  /* compute the minimum for each level */
                        min = hierarchies[i];
                        for(j = 1; j < num_nodes ; j++)
                            if( hierarchies[j*(TM_MAX_LEVELS+1) + i] < min)
                                min = hierarchies[j*(TM_MAX_LEVELS+1) + i];
                        tm_topology->arity[i] = min;
                    }
                } else {
                    tm_topology->arity = (int *)calloc(tm_topology->nb_levels, sizeof(int));
                    for(i = 0; i < tm_topology->nb_levels; i++)
                        tm_topology->arity[i] = hierarchies[i+1];
                }
                free(hierarchies);

                for(i = 0; i < tm_topology->nb_levels; i++) {
                    OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                         "topo_arity[%i] = %i\n", i, tm_topology->arity[i]));
                }

                /* compute the number of processing elements */
                tm_topology->nb_nodes = (size_t *)calloc(tm_topology->nb_levels, sizeof(size_t));
                tm_topology->nb_nodes[0] = 1;
                for(i = 1 ; i < tm_topology->nb_levels; i++)
                    tm_topology->nb_nodes[i] = tm_topology->nb_nodes[i-1] * tm_topology->arity[i-1];

#ifdef __DEBUG__
                assert(num_objs_total == (int)tm_topology->nb_nodes[tm_topology->nb_levels-1]);
#endif
                /* Build process id tab */
                tm_topology->node_id  = (int *)malloc(num_objs_total*sizeof(int));
                tm_topology->node_rank = (int *)malloc(num_objs_total*sizeof(int));
                for( i = 0 ; i < num_objs_total ; i++ ) 
                    tm_topology->node_id[i] = tm_topology->node_rank[i] = -1;
                /*note : we make the hypothesis that logical indexes in hwloc range from
                  0 to N, are contiguous and crescent.  */                   
                for( i = 0 ; i < num_objs_total ; i++ ) {
                    tm_topology->node_id[i] = obj_mapping[i];       /* use process ranks instead of core numbers */                                                            
                    if (obj_mapping[i] != -1)                       /* so that k[i] is the new rank of process i */ 
                        tm_topology->node_rank[obj_mapping[i]] = i; /* after computation by TreeMatch */
                }
                
                /* unused for now*/
                tm_topology->cost = (double*)calloc(tm_topology->nb_levels,sizeof(double));
                tm_topology->nb_proc_units = num_objs_total;

                tm_topology->nb_constraints = 0;
                for(i = 0; i < tm_topology->nb_proc_units ; i++)
                    if (obj_mapping[i] != -1)
                        tm_topology->nb_constraints++;
                tm_topology->constraints = (int *)calloc(tm_topology->nb_constraints,sizeof(int));
                for(idx = 0, i = 0; i < tm_topology->nb_proc_units ; i++)
                    if (obj_mapping[i] != -1)
                        tm_topology->constraints[idx++] = obj_mapping[i]; /* use process ranks instead of core numbers */
#ifdef __DEBUG__
                assert(idx == tm_topology->nb_constraints);
#endif
                tm_topology->oversub_fact = 1;

#ifdef __DEBUG__
                /*                
                for(i = 0; i < tm_topology->nb_levels ; i++) {
                    opal_output_verbose(10, ompi_topo_base_framework.framework_output,
                                        "tm topo node_id for level [%i] : ",i);
                    dump_int_array(10, ompi_topo_base_framework.framework_output,
                                   "", "", obj_mapping, tm_topology->nb_nodes[i]);
                }
                */
                tm_display_topology(tm_topology);
#endif
                comm_pattern = (double **)malloc(size*sizeof(double *));
                for(i = 0 ; i < size ; i++)
                    comm_pattern[i] = local_pattern + i * size;
                /* matrix needs to be symmetric */
                for( i = 0; i < size ; i++ )
                    for( j = i; j < size ; j++ ) {
                        comm_pattern[i][j] = (comm_pattern[i][j] + comm_pattern[j][i]) / 2;
                        comm_pattern[j][i] = comm_pattern[i][j];
                    }
#ifdef __DEBUG__
                opal_output_verbose(10, ompi_topo_base_framework.framework_output,
                                    "==== COMM PATTERN ====\n");
                for( i = 0 ; i < size ; i++) {
                    dump_double_array(10, ompi_topo_base_framework.framework_output,
                                      "", "", comm_pattern[i], size);
                }
#endif
                //tm_optimize_topology(&tm_topology);
                aff_mat = tm_build_affinity_mat(comm_pattern,size);
                comm_tree = tm_build_tree_from_topology(tm_topology,aff_mat, NULL, NULL);
                sol = tm_compute_mapping(tm_topology, comm_tree);

                k = (int *)calloc(sol->k_length, sizeof(int));
                for(idx = 0 ; idx < (int)sol->k_length ; idx++)
                    k[idx] = sol->k[idx][0];
#ifdef __DEBUG__
                opal_output_verbose(10, ompi_topo_base_framework.framework_output,
                                    "====> nb levels : %i\n",tm_topology->nb_levels);
                dump_int_array(10, ompi_topo_base_framework.framework_output,
                               "Rank permutation sigma/k : ", "", k, num_objs_total);
                assert(size == (int)sol->sigma_length);
                dump_int_array(10, ompi_topo_base_framework.framework_output,
                               "Matching : ", "",sol->sigma, sol->sigma_length);
#endif
                free(obj_mapping);
                free(comm_pattern);
                free(aff_mat->sum_row);
                free(aff_mat);
                tm_free_solution(sol);
                tm_free_tree(comm_tree);
                tm_free_topology(tm_topology);
            }
        }

        /* Todo : Bcast + group creation */
        /* scatter the ranks */
        /* don't need to convert k from local rank to global rank */
        if (OMPI_SUCCESS != (err = comm_old->c_coll->coll_scatter(k, 1, MPI_INT,
                                                                  &newrank, 1, MPI_INT,
                                                                  0, comm_old,
                                                                  comm_old->c_coll->coll_scatter_module))) {
            if (NULL != k) { free(k); k = NULL; }
            goto release_and_return;
        }

        if ( 0 == rank ) {
            free(k);
            k = NULL;
        }

        /* this needs to be optimized but will do for now */
        if (OMPI_SUCCESS != (err = ompi_comm_split(comm_old, 0, newrank, newcomm, false))) {
            goto release_and_return;
        }

        /* Attach the dist_graph to the newly created communicator */
        (*newcomm)->c_flags        |= OMPI_COMM_DIST_GRAPH;
        (*newcomm)->c_topo          = topo_module;
        (*newcomm)->c_topo->reorder = reorder;

    } else { /* partially distributed reordering */
        int *grank_to_lrank = NULL, *lrank_to_grank = NULL, *marked = NULL;
        int node_position = 0, offset = 0, pos = 0;
        ompi_communicator_t *localcomm = NULL;

        if (OMPI_SUCCESS != (err = ompi_comm_split(comm_old, colors[rank], rank,
                                                   &localcomm, false))) {
            goto release_and_return;
        }

        lrank_to_grank = (int *)calloc(num_procs_in_node, sizeof(int));
        if (OMPI_SUCCESS != (err = localcomm->c_coll->coll_allgather(&rank, 1, MPI_INT,
                                                                     lrank_to_grank, 1, MPI_INT,
                                                                     localcomm, localcomm->c_coll->coll_allgather_module))) {
            free(lrank_to_grank);
            ompi_comm_free(&localcomm);
            goto release_and_return;
        }

        grank_to_lrank = (int *)malloc(size * sizeof(int));
        for(i = 0 ; i < size ; grank_to_lrank[i++] = -1);
        for(i = 0 ; i < num_procs_in_node ; i++)
            grank_to_lrank[lrank_to_grank[i]] = i;

        /* Discover the local patterns */
        if (rank == lindex_to_grank[0]) {
            OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                 "========== Partially Distributed Reordering ========= \n"));
            local_pattern = (double *)calloc(num_procs_in_node * num_procs_in_node, sizeof(double));
        } else {
            local_pattern = (double *)calloc(num_procs_in_node, sizeof(double));
        }
        /* Extract the local communication pattern */
        if( true == topo->weighted ) {
            for(i = 0; i < topo->indegree; i++)
                if (grank_to_lrank[topo->in[i]] != -1)
                    local_pattern[grank_to_lrank[topo->in[i]]] += topo->inw[i];
            for(i = 0; i < topo->outdegree; i++)
                if (grank_to_lrank[topo->out[i]] != -1)
                    local_pattern[grank_to_lrank[topo->out[i]]] += topo->outw[i];
        }
        if (OMPI_SUCCESS != (err = localcomm->c_coll->coll_gather((rank == lindex_to_grank[0] ? MPI_IN_PLACE : local_pattern),
                                                                  num_procs_in_node, MPI_DOUBLE,
                                                                  local_pattern, num_procs_in_node, MPI_DOUBLE,
                                                                  0, localcomm, localcomm->c_coll->coll_gather_module))) {
            free(lrank_to_grank);
            ompi_comm_free(&localcomm);
            free(grank_to_lrank);
            goto release_and_return;
        }

        /* The root has now the entire information, so let's crunch it */
        if (rank == lindex_to_grank[0]) {
            tm_topology_t  *tm_topology = NULL;
            tm_tree_t *comm_tree = NULL;
            tm_solution_t *sol = NULL;
            tm_affinity_mat_t *aff_mat = NULL;
            double **comm_pattern = NULL;
            int *obj_to_rank_in_lcomm = NULL;

            comm_pattern = (double **)malloc(num_procs_in_node*sizeof(double *));
            for( i = 0; i < num_procs_in_node; i++ ) {
                comm_pattern[i] = local_pattern + i * num_procs_in_node;
            }
            /* Matrix needs to be symmetric. Beware: as comm_patterns
             * refers to local_pattern we indirectly alter the content
             * of local_pattern */
            for( i = 0; i < num_procs_in_node ; i++ )
                for( j = i; j < num_procs_in_node ; j++ ) {
                    comm_pattern[i][j] = (comm_pattern[i][j] + comm_pattern[j][i]) / 2;
                    comm_pattern[j][i] = comm_pattern[i][j];
                }

#ifdef __DEBUG__
            OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                 "========== COMM PATTERN ============= \n"));
            for(i = 0 ; i < num_procs_in_node ; i++){
                opal_output_verbose(10, ompi_topo_base_framework.framework_output," %i : ",i);
                dump_double_array(10, ompi_topo_base_framework.framework_output,
                                  "", "", comm_pattern[i], num_procs_in_node);
            }
            opal_output_verbose(10, ompi_topo_base_framework.framework_output,
                                "======================= \n");
#endif

            tm_topology  = (tm_topology_t *)malloc(sizeof(tm_topology_t));
            tm_topology->nb_levels = numlevels;
            tm_topology->arity     = (int *)calloc(tm_topology->nb_levels, sizeof(int));
            tm_topology->nb_nodes  = (size_t *)calloc(tm_topology->nb_levels, sizeof(size_t));
            
            for(i = 0 ; i < tm_topology->nb_levels ; i++){
                int nb_objs = hwloc_get_nbobjs_by_depth(opal_hwloc_topology, tracker[i]->depth);
                tm_topology->nb_nodes[i] = nb_objs;
                tm_topology->arity[i]    = tracker[i]->arity;
            }

            
#ifdef __DEBUG__
            assert(num_objs_in_node == (int)tm_topology->nb_nodes[tm_topology->nb_levels-1]);
#endif
            /* create a table that derives the rank in local (node) comm from the object number */
            obj_to_rank_in_lcomm = (int *)malloc(num_objs_in_node*sizeof(int));
            for(i = 0 ; i < num_objs_in_node ; i++) {
                obj_to_rank_in_lcomm[i] = -1;
                object = hwloc_get_obj_by_depth(opal_hwloc_topology, effective_depth, i);
                for( j = 0; j < num_procs_in_node ; j++ )
                    if(localrank_to_objnum[j] == (int)(object->logical_index)) {
                        obj_to_rank_in_lcomm[i] = j;
                        break;
                    }
            }
            
            /* Build process id tab */
            tm_topology->node_id  = (int *)malloc(num_objs_in_node*sizeof(int));
            tm_topology->node_rank = (int *)malloc(num_objs_in_node*sizeof(int));
            for(i = 1 ; i < num_objs_in_node; i++)
                tm_topology->node_id[i] = tm_topology->node_rank[i] = -1;
            
            for( i = 0 ; i < num_objs_in_node ; i++ ) {
                /*note : we make the hypothesis that logical indexes in hwloc range from
                  0 to N, are contiguous and crescent.  */                   
                tm_topology->node_id[i] = obj_to_rank_in_lcomm[i];
                if( obj_to_rank_in_lcomm[i] != -1)
                    tm_topology->node_rank[obj_to_rank_in_lcomm[i]] = i; 
            }
            
            /* unused for now*/
            tm_topology->cost = (double*)calloc(tm_topology->nb_levels,sizeof(double));

            tm_topology->nb_proc_units = num_objs_in_node;
            tm_topology->nb_constraints = 0;
            
            for(i = 0; i < num_objs_in_node ; i++)
                if (obj_to_rank_in_lcomm[i] != -1)
                    tm_topology->nb_constraints++;
            
            tm_topology->constraints = (int *)calloc(tm_topology->nb_constraints,sizeof(int));
            for(idx = 0,i = 0; i < num_objs_in_node ; i++)
                if (obj_to_rank_in_lcomm[i] != -1)
                    tm_topology->constraints[idx++] = obj_to_rank_in_lcomm[i];

            tm_topology->oversub_fact = 1;

#ifdef __DEBUG__
            assert(num_objs_in_node == (int)tm_topology->nb_nodes[tm_topology->nb_levels-1]);
            OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                 "Levels in topo : %i | num procs in node : %i\n",
                                 tm_topology->nb_levels,num_procs_in_node));
            for(i = 0; i < tm_topology->nb_levels ; i++) {
                OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                     "Nb objs for level %i : %lu | arity %i\n ",
                                     i, tm_topology->nb_nodes[i],tm_topology->arity[i]));
            }
            dump_int_array(10, ompi_topo_base_framework.framework_output,
                           "", "Obj id ", tm_topology->node_id, tm_topology->nb_nodes[tm_topology->nb_levels-1]);
            tm_display_topology(tm_topology);
#endif
            //tm_optimize_topology(&tm_topology);
            aff_mat = tm_build_affinity_mat(comm_pattern,num_procs_in_node);
            comm_tree = tm_build_tree_from_topology(tm_topology,aff_mat, NULL, NULL);
            sol = tm_compute_mapping(tm_topology, comm_tree);

            assert((int)sol->k_length == num_objs_in_node);

            k = (int *)calloc(sol->k_length, sizeof(int));
            for(idx = 0 ; idx < (int)sol->k_length ; idx++)
                k[idx] = sol->k[idx][0];

#ifdef __DEBUG__
            OPAL_OUTPUT_VERBOSE((10, ompi_topo_base_framework.framework_output,
                                 "====> nb levels : %i\n",tm_topology->nb_levels));
            dump_int_array(10, ompi_topo_base_framework.framework_output,
                           "Rank permutation sigma/k : ", "", k, num_procs_in_node);
            assert(num_procs_in_node == (int)sol->sigma_length);
            dump_int_array(10, ompi_topo_base_framework.framework_output,
                           "Matching : ", "", sol->sigma, sol->sigma_length);
#endif
            free(obj_to_rank_in_lcomm);
            free(aff_mat->sum_row);
            free(aff_mat);
            free(comm_pattern);
            tm_free_solution(sol);
            tm_free_tree(comm_tree);
            tm_free_topology(tm_topology);
        }
        
        /* Todo : Bcast + group creation */
        /* scatter the ranks */
        if (OMPI_SUCCESS != (err = localcomm->c_coll->coll_scatter(k, 1, MPI_INT,
                                                                   &newrank, 1, MPI_INT,
                                                                   0, localcomm,
                                                                   localcomm->c_coll->coll_scatter_module))) {
            if (NULL != k) { free(k); k = NULL; };
            ompi_comm_free(&localcomm);
            free(lrank_to_grank);
            free(grank_to_lrank);
            goto release_and_return;
        }

        /* compute the offset of newrank before the split */
        /* use the colors array, not the vpids */
        marked = (int *)malloc((num_nodes-1)*sizeof(int));
        for(idx = 0 ; idx < num_nodes - 1 ; idx++)
            marked[idx] = -1;

        while( (node_position != rank) && (colors[node_position] != colors[rank])) {
            /* Have we already counted the current color ? */
            for(idx = 0; idx < pos; idx++)
                if( marked[idx] == colors[node_position] )
                    goto next_iter;  /* yes, let's skip the rest */
            /* How many elements of this color are here ? none before the current position */
            for(; idx < size; idx++)
                if(colors[idx] == colors[node_position])
                    offset++;
            marked[pos++] = colors[node_position];
          next_iter:
            node_position++;
        }
        newrank += offset;
        free(marked);

        if (rank == lindex_to_grank[0]) {
            free(k);
            k = NULL;
        }

        /* this needs to be optimized but will do for now */
        if (OMPI_SUCCESS != (err = ompi_comm_split(comm_old, 0, newrank, newcomm, false))) {
            ompi_comm_free(&localcomm);
            free(lrank_to_grank);
            free(grank_to_lrank);
            goto release_and_return;
        }

        /* Attach the dist_graph to the newly created communicator */
        (*newcomm)->c_flags        |= OMPI_COMM_DIST_GRAPH;
        (*newcomm)->c_topo          = topo_module;
        (*newcomm)->c_topo->reorder = reorder;

        free(grank_to_lrank);
        free(lrank_to_grank);
    } /* distributed reordering end */

    /* Translate the ranks provided by the user to account for the reordered communicator.
     * Note that this operation is safe to be done in place, directly into the in/out arrays.
     */
    ompi_group_translate_ranks(comm_old->c_remote_group, topo->indegree,
                               topo->in,
                               (*newcomm)->c_remote_group,
                               topo->in);
    ompi_group_translate_ranks(comm_old->c_remote_group, topo->outdegree,
                               topo->out,
                               (*newcomm)->c_remote_group,
                               topo->out);
  release_and_return:
    if (NULL != reqs ) free(reqs);
    if (NULL != tracker) free(tracker);
    if (NULL != local_pattern) free(local_pattern);
    free(colors);
    if (NULL != lindex_to_grank) free(lindex_to_grank);
    if (NULL != nodes_roots) free(nodes_roots);  /* only on root */
    if (NULL != localrank_to_objnum) free(localrank_to_objnum);
    if( NULL != set) hwloc_bitmap_free(set);
    /* As the reordering is optional, if we encountered an error during the reordering,
     * we can safely return with just a duplicate of the original communicator associated
     * with the topology. */
    if( OMPI_SUCCESS != err ) goto fallback;
    return OMPI_SUCCESS;
}