1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2020 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2014 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2012 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2014 Intel, Inc. All rights reserved
* Copyright (c) 2015 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2015-2016 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include <math.h>
#include "ompi/mpi/c/bindings.h"
#include "ompi/runtime/params.h"
#include "ompi/communicator/communicator.h"
#include "ompi/errhandler/errhandler.h"
#if OMPI_BUILD_MPI_PROFILING
#if OPAL_HAVE_WEAK_SYMBOLS
#pragma weak MPI_Dims_create = PMPI_Dims_create
#endif
#define MPI_Dims_create PMPI_Dims_create
#endif
static const char FUNC_NAME[] = "MPI_Dims_create";
/* static functions */
static int assignnodes(int ndim, int nfactor, int *pfacts,int **pdims);
static int getfactors(int num, int *nfators, int **factors);
/*
* This is a utility function, no need to have anything in the lower
* layer for this at all
*/
int MPI_Dims_create(int nnodes, int ndims, int dims[])
{
int i;
int freeprocs;
int freedims;
int nfactors;
int *factors;
int *procs;
int *p;
int err;
if (MPI_PARAM_CHECK) {
OMPI_ERR_INIT_FINALIZE(FUNC_NAME);
if (0 > ndims) {
return OMPI_ERRHANDLER_INVOKE (MPI_COMM_WORLD,
MPI_ERR_DIMS, FUNC_NAME);
}
if ((0 != ndims) && (NULL == dims)) {
return OMPI_ERRHANDLER_INVOKE (MPI_COMM_WORLD,
MPI_ERR_ARG, FUNC_NAME);
}
if (1 > nnodes) {
return OMPI_ERRHANDLER_INVOKE (MPI_COMM_WORLD,
MPI_ERR_DIMS, FUNC_NAME);
}
}
/* Get # of free-to-be-assigned processes and # of free dimensions */
freeprocs = nnodes;
freedims = 0;
for (i = 0, p = dims; i < ndims; ++i,++p) {
if (*p == 0) {
++freedims;
} else if ((*p < 0) || ((nnodes % *p) != 0)) {
return OMPI_ERRHANDLER_INVOKE (MPI_COMM_WORLD, MPI_ERR_DIMS,
FUNC_NAME);
} else {
freeprocs /= *p;
}
}
if (freedims == 0) {
if (freeprocs == 1) {
return MPI_SUCCESS;
}
return OMPI_ERRHANDLER_NOHANDLE_INVOKE(MPI_ERR_DIMS,
FUNC_NAME);
}
if (freeprocs == 1) {
for (i = 0; i < ndims; ++i, ++dims) {
if (*dims == 0) {
*dims = 1;
}
}
return MPI_SUCCESS;
}
/* Factor the number of free processes */
if (MPI_SUCCESS != (err = getfactors(freeprocs, &nfactors, &factors))) {
return OMPI_ERRHANDLER_NOHANDLE_INVOKE(err,
FUNC_NAME);
}
/* Assign free processes to free dimensions */
if (MPI_SUCCESS != (err = assignnodes(freedims, nfactors, factors, &procs))) {
free(factors);
return OMPI_ERRHANDLER_NOHANDLE_INVOKE(err,
FUNC_NAME);
}
/* Return assignment results */
p = procs;
for (i = 0; i < ndims; ++i, ++dims) {
if (*dims == 0) {
*dims = *p++;
}
}
free((char *) factors);
free((char *) procs);
/* all done */
return MPI_SUCCESS;
}
/*
* assignnodes
*
* Function: - assign processes to dimensions
* - get "best-balanced" grid
* - greedy bin-packing algorithm used
* - sort dimensions in decreasing order
* - dimensions array dynamically allocated
* Accepts: - # of dimensions
* - # of prime factors
* - array of prime factors
* - ptr to array of dimensions (returned value)
* Returns: - 0 or ERROR
*/
static int
assignnodes(int ndim, int nfactor, int *pfacts, int **pdims)
{
int *bins;
int i, j;
int n;
int f;
int *p;
int *pmin;
if (0 >= ndim) {
return MPI_ERR_DIMS;
}
/* Allocate and initialize the bins */
bins = (int *) malloc((unsigned) ndim * sizeof(int));
if (NULL == bins) {
return MPI_ERR_NO_MEM;
}
*pdims = bins;
for (i = 0, p = bins; i < ndim; ++i, ++p) {
*p = 1;
}
/* Loop assigning factors from the highest to the lowest */
for (j = nfactor - 1; j >= 0; --j) {
f = pfacts[j];
/* Assign a factor to the smallest bin */
pmin = bins;
for (i = 1, p = pmin + 1; i < ndim; ++i, ++p) {
if (*p < *pmin) {
pmin = p;
}
}
*pmin *= f;
}
/* Sort dimensions in decreasing order (O(n^2) for now) */
for (i = 0, pmin = bins; i < ndim - 1; ++i, ++pmin) {
for (j = i + 1, p = pmin + 1; j < ndim; ++j, ++p) {
if (*p > *pmin) {
n = *p;
*p = *pmin;
*pmin = n;
}
}
}
return MPI_SUCCESS;
}
/*
* getfactors
*
* Function: - factorize a number
* Accepts: - number
* - # prime factors
* - array of prime factors
* Returns: - MPI_SUCCESS or ERROR
*/
static int
getfactors(int num, int *nfactors, int **factors) {
int size;
int d;
int i;
int sqrtnum;
if(num < 2) {
(*nfactors) = 0;
(*factors) = NULL;
return MPI_SUCCESS;
}
/* Allocate the array of prime factors which cannot exceed log_2(num) entries */
sqrtnum = ceil(sqrt(num));
size = ceil(log(num) / log(2));
*factors = (int *) malloc((unsigned) size * sizeof(int));
i = 0;
/* determine all occurrences of factor 2 */
while((num % 2) == 0) {
num /= 2;
(*factors)[i++] = 2;
}
/* determine all occurrences of uneven prime numbers up to sqrt(num) */
d = 3;
for(d = 3; (num > 1) && (d <= sqrtnum); d += 2) {
while((num % d) == 0) {
num /= d;
(*factors)[i++] = d;
}
}
/* as we looped only up to sqrt(num) one factor > sqrt(num) may be left over */
if(num != 1) {
(*factors)[i++] = num;
}
(*nfactors) = i;
return MPI_SUCCESS;
}
|