1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
|
/*
* Copyright (c) 2013-2015 Mellanox Technologies, Inc.
* All rights reserved.
* Copyright (c) 2019 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "oshmem_config.h"
#include <stdio.h>
#include <stdlib.h>
#include "oshmem/constants.h"
#include "oshmem/mca/spml/spml.h"
#include "oshmem/mca/scoll/scoll.h"
#include "oshmem/mca/scoll/base/base.h"
#include "oshmem/proc/proc.h"
#include "scoll_basic.h"
static int _algorithm_central_counter(struct oshmem_group_t *group,
long *pSync);
static int _algorithm_tournament(struct oshmem_group_t *group, long *pSync);
static int _algorithm_recursive_doubling(struct oshmem_group_t *group,
long *pSync);
static int _algorithm_dissemination(struct oshmem_group_t *group, long *pSync);
static int _algorithm_basic(struct oshmem_group_t *group, long *pSync);
static int _algorithm_adaptive(struct oshmem_group_t *group, long *pSync);
int mca_scoll_basic_barrier(struct oshmem_group_t *group, long *pSync, int alg)
{
int rc = OSHMEM_SUCCESS;
/* Arguments validation */
if (!group || !pSync) {
SCOLL_ERROR("Active set (group) of PE is not defined");
rc = OSHMEM_ERR_BAD_PARAM;
}
if ((rc == OSHMEM_SUCCESS) && oshmem_proc_group_is_member(group)) {
if (pSync) {
alg = (alg == SCOLL_DEFAULT_ALG ?
mca_scoll_basic_param_barrier_algorithm : alg);
switch (alg) {
case SCOLL_ALG_BARRIER_CENTRAL_COUNTER:
{
rc = _algorithm_central_counter(group, pSync);
break;
}
case SCOLL_ALG_BARRIER_TOURNAMENT:
{
rc = _algorithm_tournament(group, pSync);
break;
}
case SCOLL_ALG_BARRIER_RECURSIVE_DOUBLING:
{
rc = _algorithm_recursive_doubling(group, pSync);
break;
}
case SCOLL_ALG_BARRIER_DISSEMINATION:
{
rc = _algorithm_dissemination(group, pSync);
break;
}
case SCOLL_ALG_BARRIER_BASIC:
{
rc = _algorithm_basic(group, pSync);
break;
}
case SCOLL_ALG_BARRIER_ADAPTIVE:
{
rc = _algorithm_adaptive(group, pSync);
break;
}
default:
{
rc = _algorithm_recursive_doubling(group, pSync);
}
}
} else {
SCOLL_ERROR("Incorrect argument pSync");
rc = OSHMEM_ERR_BAD_PARAM;
}
}
return rc;
}
/*
This algorithm is quite simple and straightforward. But because of it�s obvious simplicity and
the naive prove for correctness it is implemented quite often. One node asks peers if they are
achieve barrier state. When all processors are ready it signals to go ahead.
Outlay:
NP-1 competing network transfers are needed to implement the counter
The memory usage is constant (1 byte) per node.
*/
static int _algorithm_central_counter(struct oshmem_group_t *group,
long *pSync)
{
int rc = OSHMEM_SUCCESS;
long value = SHMEM_SYNC_INIT;
int root_id = 0;
int PE_root = oshmem_proc_pe_vpid(group, root_id);
int i = 0;
SCOLL_VERBOSE(12, "[#%d] Barrier algorithm: Central Counter", group->my_pe);
SCOLL_VERBOSE(15, "[#%d] pSync[0] = %ld", group->my_pe, pSync[0]);
/* Set current state as WAIT */
pSync[0] = SHMEM_SYNC_WAIT;
/* Root processes synchronization */
if (PE_root == group->my_pe) {
int pe_cur = 0;
long wait_pe_count = 0;
int* wait_pe_array = NULL;
wait_pe_array = malloc(sizeof(*wait_pe_array) * group->proc_count);
if (wait_pe_array) {
SCOLL_VERBOSE(14, "[#%d] PE is the root", group->my_pe);
wait_pe_count = group->proc_count;
for (i = 0; i < group->proc_count; i++) {
wait_pe_array[i] = oshmem_proc_pe_vpid(group, i);
}
wait_pe_array[root_id] = OSHMEM_PE_INVALID;
wait_pe_count--;
while (wait_pe_count) {
for (i = 0; (i < group->proc_count) && (rc == OSHMEM_SUCCESS);
i++) {
pe_cur = wait_pe_array[i];
if (pe_cur != OSHMEM_PE_INVALID) {
rc = MCA_SPML_CALL(get(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, pe_cur));
if ((rc == OSHMEM_SUCCESS)
&& (value == SHMEM_SYNC_WAIT)) {
wait_pe_array[i] = OSHMEM_PE_INVALID;
wait_pe_count--;
SCOLL_VERBOSE(14,
"[#%d] PE#%d is ready (wait list counter: %d)",
group->my_pe, pe_cur, (int)wait_pe_count);
}
}
}
}
SCOLL_VERBOSE(14, "[#%d] PE signals to all", group->my_pe);
value = SHMEM_SYNC_RUN;
for (i = 0; (i < group->proc_count) && (rc == OSHMEM_SUCCESS);
i++) {
pe_cur = oshmem_proc_pe_vpid(group, i);
if (pe_cur != PE_root) {
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, pe_cur));
}
}
free(wait_pe_array);
} else {
rc = OSHMEM_ERR_OUT_OF_RESOURCE;
}
/* Possibly this is unnecessary...
But imagine the scenario when you have 2 sequential barriers and the root PE is the fastest one.
The root could leave the first barrier and in the second barrier it could get SHMEM_SYNC_WAIT value on
remote node before the remote node receives its SHMEM_SYNC_RUN value in the first barrier
*/
MCA_SPML_CALL(quiet(oshmem_ctx_default));
}
/* Wait for RUN signal */
else {
SCOLL_VERBOSE(14,
"[#%d] PE waits for a signal from root",
group->my_pe);
value = SHMEM_SYNC_RUN;
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_EQ, (void*)&value, SHMEM_LONG));
}
/* Restore initial values */
SCOLL_VERBOSE(12,
"[#%d] Restore special synchronization array",
group->my_pe);
for (i = 0; i < _SHMEM_BARRIER_SYNC_SIZE; i++) {
pSync[i] = _SHMEM_SYNC_VALUE;
}
SCOLL_VERBOSE(15, "[#%d] pSync[0] = %ld", group->my_pe, pSync[0]);
return rc;
}
/*
The Tournament Barrier, proposed by Hengsen, Finkel and Manser is mostly suitable for shared memory
multiprocessors because it benefits from several caching mechanisms.
The algorithm is similar to a tournament game. In each round two
nodes play against each other. The winner is known in advance and waits until the looser arrives. The
winners play against each other in the next round. The overall winner (the champion) notifies all others
about the end of the barrier.
Outlay:
The game scales with log2(NP) and uses 1 byte of memory.
*/
static int _algorithm_tournament(struct oshmem_group_t *group, long *pSync)
{
int rc = OSHMEM_SUCCESS;
int round = 0;
int exit_flag = group->proc_count - 1;
long value = SHMEM_SYNC_INIT;
int my_id = oshmem_proc_group_find_id(group, group->my_pe);
int peer_id = 0;
int peer_pe = 0;
int i = 0;
SCOLL_VERBOSE(12, "[#%d] Barrier algorithm: Tournament", group->my_pe);
SCOLL_VERBOSE(15, "[#%d] pSync[0] = %ld", group->my_pe, pSync[0]);
/* Set current state as WAIT */
pSync[0] = SHMEM_SYNC_WAIT;
while (exit_flag && (rc == OSHMEM_SUCCESS)) {
/* Define a peer for competition */
peer_id = my_id ^ (1 << round);
/* Update exit condition and round counter */
exit_flag >>= 1;
round++;
/* Do not have peer for tournament */
if (peer_id >= group->proc_count)
continue;
if (my_id < peer_id) {
pSync[0] = peer_id;
value = my_id;
SCOLL_VERBOSE(14, "[#%d] round = %d wait", group->my_pe, round);
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_EQ, (void*)&value, SHMEM_LONG));
} else {
peer_pe = oshmem_proc_pe_vpid(group, peer_id);
#if 1 /* It is ugly implementation of compare and swap operation
Usage of this hack does not give performance improvement but
it is expected that shmem_long_cswap() will make it faster.
*/
do {
MCA_SPML_CALL(get(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
} while (value != my_id);
SCOLL_VERBOSE(14,
"[#%d] round = %d signals to #%d",
group->my_pe, round, peer_pe);
value = peer_id;
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
#else
SCOLL_VERBOSE(14, "[#%d] round = %d signals to #%d", group->my_pe, round, peer_pe);
do
{
rc = MCA_ATOMIC_CALL(cswap((void*)pSync, (void*)&value, (const void*)&my_id, (const void*)&peer_id, sizeof(value), peer_pe));
}while (value != my_id);
#endif
SCOLL_VERBOSE(14, "[#%d] round = %d wait", group->my_pe, round);
value = SHMEM_SYNC_RUN;
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_EQ, (void*)&value, SHMEM_LONG));
break;
}
}
/* Restore initial values */
SCOLL_VERBOSE(12,
"[#%d] Restore special synchronization array",
group->my_pe);
for (i = 0; i < _SHMEM_BARRIER_SYNC_SIZE; i++) {
pSync[i] = _SHMEM_SYNC_VALUE;
}
/* Send result to all PE in group */
if ((my_id == 0) && (rc == OSHMEM_SUCCESS)) {
SCOLL_VERBOSE(14, "[#%d] signals to all", group->my_pe);
value = SHMEM_SYNC_RUN;
for (peer_id = 1;
(peer_id < group->proc_count) && (rc == OSHMEM_SUCCESS);
peer_id++) {
peer_pe = oshmem_proc_pe_vpid(group, peer_id);
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
}
}
SCOLL_VERBOSE(15, "[#%d] pSync[0] = %ld", group->my_pe, pSync[0]);
return rc;
}
/*
Pairwise Exchange With Recursive Doubling.
Rinka Gupta, Vinod Tipparaju, Jare Nieplocha, and Dhabaleswar Panda. Efficient Barrier
using Remote Memory Operations on VIA-Based Clusters. In 2002 IEEE International
Conference on Cluster Computing (CLUSTER 2002), page 83. IEEE Computer Society, 2002.
Outlay:
The algorithm uses a maximum of log2(NP) + 2 network writes and P bytes memory per node.
*/
static int _algorithm_recursive_doubling(struct oshmem_group_t *group,
long *pSync)
{
int rc = OSHMEM_SUCCESS;
int round = 0;
int floor2_proc = 0;
int exit_flag = 0;
long value = SHMEM_SYNC_INIT;
int my_id = oshmem_proc_group_find_id(group, group->my_pe);
int peer_id = 0;
int peer_pe = 0;
int i = 0;
floor2_proc = 1;
i = group->proc_count;
i >>= 1;
while (i) {
i >>= 1;
floor2_proc <<= 1;
}
SCOLL_VERBOSE(12,
"[#%d] Barrier algorithm: Recursive Doubling",
group->my_pe);
SCOLL_VERBOSE(15,
"[#%d] pSync[0] = %ld floor2_proc = %d",
group->my_pe, pSync[0], floor2_proc);
if (my_id >= floor2_proc) {
/* I am in extra group, my partner is node (my_id-y) in basic group */
peer_id = my_id - floor2_proc;
peer_pe = oshmem_proc_pe_vpid(group, peer_id);
SCOLL_VERBOSE(14,
"[#%d] is extra and signal to #%d",
group->my_pe, peer_pe);
value = SHMEM_SYNC_WAIT;
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
SCOLL_VERBOSE(14, "[#%d] wait", group->my_pe);
value = SHMEM_SYNC_RUN;
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_EQ, (void*)&value, SHMEM_LONG));
/* Restore initial values */
SCOLL_VERBOSE(12,
"[#%d] Restore special synchronization array",
group->my_pe);
for (i = 0; i < _SHMEM_BARRIER_SYNC_SIZE; i++) {
pSync[i] = _SHMEM_SYNC_VALUE;
}
} else {
/* Wait for a peer from extra group */
if ((group->proc_count - floor2_proc) > my_id) {
/* I am in basic group, my partner is node (my_id+y) in extra group */
peer_id = my_id + floor2_proc;
peer_pe = oshmem_proc_pe_vpid(group, peer_id);
SCOLL_VERBOSE(14,
"[#%d] wait a signal from #%d",
group->my_pe, peer_pe);
value = SHMEM_SYNC_WAIT;
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_EQ, (void*)&value, SHMEM_LONG));
}
/* Pairwise exchange */
exit_flag = floor2_proc - 1;
pSync[0] = round;
while (exit_flag && (rc == OSHMEM_SUCCESS)) {
/* Define a peer for competition */
peer_id = my_id ^ (1 << round);
/* Update exit condition and round counter */
exit_flag >>= 1;
round++;
peer_pe = oshmem_proc_pe_vpid(group, peer_id);
#if 1 /* It is ugly implementation of compare and swap operation
Usage of this hack does not give performance improvement but
it is expected that shmem_long_cswap() will make it faster.
*/
do {
MCA_SPML_CALL(get(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
} while (value != (round - 1));
SCOLL_VERBOSE(14,
"[#%d] round = %d signals to #%d",
group->my_pe, round, peer_pe);
value = round;
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
#else
SCOLL_VERBOSE(14, "[#%d] round = %d signals to #%d", group->my_pe, round, peer_pe);
{
long cond = round - 1;
do
{
rc = MCA_ATOMIC_CALL(cswap((void*)pSync, (void*)&value, (const void*)&cond, (const void*)&round, sizeof(value), peer_pe));
}while (value != (round-1));
}
#endif
SCOLL_VERBOSE(14, "[#%d] round = %d wait", group->my_pe, round);
value = round;
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_GE, (void*)&value, SHMEM_LONG));
}
/* Restore initial values */
SCOLL_VERBOSE(12,
"[#%d] Restore special synchronization array",
group->my_pe);
for (i = 0; i < _SHMEM_BARRIER_SYNC_SIZE; i++) {
pSync[i] = _SHMEM_SYNC_VALUE;
}
/* Notify a peer from extra group */
if ((group->proc_count - floor2_proc) > my_id) {
/* I am in basic group, my partner is node (my_id+y) in extra group */
peer_id = my_id + floor2_proc;
peer_pe = oshmem_proc_pe_vpid(group, peer_id);
SCOLL_VERBOSE(14, "[#%d] signals to #%d", group->my_pe, peer_pe);
value = SHMEM_SYNC_RUN;
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
}
}
SCOLL_VERBOSE(15, "[#%d] pSync[0] = %ld", group->my_pe, pSync[0]);
return rc;
}
/*
The Dissemination Barrier, introduced by Hengsen, Finkel and Manser in 1998.
The algorithm is mostly an improvement of the Butterfly Barrier for non power of two processor counts.
It uses the same pairwise synchronization but with other partners.
Outlay:
The game scales with log2(NP) and uses 1 byte of memory.
*/
static int _algorithm_dissemination(struct oshmem_group_t *group, long *pSync)
{
int rc = OSHMEM_SUCCESS;
int round = 0;
int log2_proc = 0;
long value = SHMEM_SYNC_INIT;
int my_id = oshmem_proc_group_find_id(group, group->my_pe);
int peer_id = 0;
int peer_pe = 0;
int i = 0;
log2_proc = scoll_log2((unsigned long) group->proc_count);
SCOLL_VERBOSE(12, "[#%d] Barrier algorithm: Dissemination", group->my_pe);
SCOLL_VERBOSE(15,
"[#%d] pSync[0] = %ld floor2_proc = %d",
group->my_pe, pSync[0], log2_proc);
pSync[0] = round;
for (round = 0; (round <= log2_proc) && (rc == OSHMEM_SUCCESS); round++) {
/* Define a peer to send signal */
peer_id = (my_id + (1 << round)) % group->proc_count;
peer_pe = oshmem_proc_pe_vpid(group, peer_id);
#if 1 /* It is ugly implementation of compare and swap operation
Usage of this hack does not give performance improvement but
it is expected that shmem_long_cswap() will make it faster.
*/
do {
MCA_SPML_CALL(get(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
} while (value != round);
SCOLL_VERBOSE(14,
"[#%d] round = %d signals to #%d",
group->my_pe, round, peer_pe);
value = round + 1;
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
#endif
SCOLL_VERBOSE(14, "[#%d] round = %d wait", group->my_pe, round);
value = round + 1;
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_GE, (void*)&value, SHMEM_LONG));
}
/* Restore initial values */
SCOLL_VERBOSE(12,
"[#%d] Restore special synchronization array",
group->my_pe);
for (i = 0; i < _SHMEM_BARRIER_SYNC_SIZE; i++) {
pSync[i] = _SHMEM_SYNC_VALUE;
}
SCOLL_VERBOSE(15, "[#%d] pSync[0] = %ld", group->my_pe, pSync[0]);
return rc;
}
static int _algorithm_basic(struct oshmem_group_t *group, long *pSync)
{
int rc = OSHMEM_SUCCESS;
int root_id = 0;
int PE_root = oshmem_proc_pe_vpid(group, root_id);
int i = 0;
SCOLL_VERBOSE(12, "[#%d] Barrier algorithm: Basic", group->my_pe);
if (PE_root != group->my_pe) {
rc = MCA_SPML_CALL(send(NULL, 0, PE_root, MCA_SPML_BASE_PUT_STANDARD));
if (OSHMEM_SUCCESS != rc) {
return rc;
}
rc = MCA_SPML_CALL(recv(NULL, 0, PE_root));
if (OSHMEM_SUCCESS != rc) {
return rc;
}
}
/* The root collects and broadcasts the messages. */
else {
int pe_cur = 0;
for (i = 0; (i < group->proc_count) && (rc == OSHMEM_SUCCESS); i++) {
pe_cur = oshmem_proc_pe_vpid(group, i);
if (pe_cur != PE_root) {
rc = MCA_SPML_CALL(recv(NULL, 0, pe_cur));
}
if (OSHMEM_SUCCESS != rc) {
return rc;
}
}
for (i = 0; (i < group->proc_count) && (rc == OSHMEM_SUCCESS); i++) {
pe_cur = oshmem_proc_pe_vpid(group, i);
if (pe_cur != PE_root) {
rc = MCA_SPML_CALL(send(NULL, 0, pe_cur, MCA_SPML_BASE_PUT_STANDARD));
}
if (OSHMEM_SUCCESS != rc) {
return rc;
}
}
}
return rc;
}
static int _algorithm_adaptive(struct oshmem_group_t *group, long *pSync)
{
int rc = OSHMEM_SUCCESS;
bool local_peers_only = true;
SCOLL_VERBOSE(12, "[#%d] Barrier algorithm: Adaptive", group->my_pe);
/* check if we have only local peers */
{
int i = 0;
int my_id = oshmem_proc_group_find_id(group, group->my_pe);
for (i = 0; i < group->proc_count; i++) {
if (i == my_id)
continue;
if (!oshmem_proc_on_local_node(i)) {
local_peers_only = false;
break;
}
}
}
/* Select algorithm we use:
* use send/recv way for group in the same node and for np < 32
* otherwise use put/get way
*/
if (local_peers_only || (group->proc_count < 32)) {
rc = _algorithm_basic(group, pSync);
} else {
rc = _algorithm_recursive_doubling(group, pSync);
}
return rc;
}
|