1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
/*
* Copyright (c) 2016-2017 Inria. All rights reserved.
* Copyright (c) 2017 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/*
Measurement for the pml_monitoring component overhead
Designed by Clement Foyer <clement.foyer@inria.fr>
Contact the authors for questions.
To be run as:
*/
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <string.h>
#include "mpi.h"
#define NB_ITER 1000
#define FULL_NB_ITER (size_world * NB_ITER)
#define MAX_SIZE (1024 * 1024 * 1.4)
#define NB_OPS 6
static int rank_world = -1;
static int size_world = 0;
static int to = -1;
static int from = -1;
static MPI_Win win = MPI_WIN_NULL;
/* Sorting results */
static int comp_double(const void*_a, const void*_b)
{
const double*a = _a;
const double*b = _b;
if(*a < *b)
return -1;
else if(*a > *b)
return 1;
else
return 0;
}
/* Timing */
static inline void get_tick(struct timespec*t)
{
#if defined(__bg__)
# define CLOCK_TYPE CLOCK_REALTIME
#elif defined(CLOCK_MONOTONIC_RAW)
# define CLOCK_TYPE CLOCK_MONOTONIC_RAW
#elif defined(CLOCK_MONOTONIC)
# define CLOCK_TYPE CLOCK_MONOTONIC
#endif
#if defined(CLOCK_TYPE)
clock_gettime(CLOCK_TYPE, t);
#else
struct timeval tv;
gettimeofday(&tv, NULL);
t->tv_sec = tv.tv_sec;
t->tv_nsec = tv.tv_usec * 1000;
#endif
}
static inline double timing_delay(const struct timespec*const t1, const struct timespec*const t2)
{
const double delay = 1000000.0 * (t2->tv_sec - t1->tv_sec) + (t2->tv_nsec - t1->tv_nsec) / 1000.0;
return delay;
}
/* Operations */
static inline void op_send(double*res, void*sbuf, int size, int tagno, void*rbuf) {
MPI_Request request;
struct timespec start, end;
/* Post to be sure no unexpected message will be generated */
MPI_Irecv(rbuf, size, MPI_BYTE, from, tagno, MPI_COMM_WORLD, &request);
/* Token ring to synchronize */
/* We message the sender to make him know we are ready to
receive (even for non-eager mode sending) */
if( 0 == rank_world ) {
MPI_Send(NULL, 0, MPI_BYTE, from, 100, MPI_COMM_WORLD);
MPI_Recv(NULL, 0, MPI_BYTE, to, 100, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else {
MPI_Recv(NULL, 0, MPI_BYTE, to, 100, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(NULL, 0, MPI_BYTE, from, 100, MPI_COMM_WORLD);
}
/* do monitored operation */
get_tick(&start);
MPI_Send(sbuf, size, MPI_BYTE, to, tagno, MPI_COMM_WORLD);
get_tick(&end);
MPI_Wait(&request, MPI_STATUS_IGNORE);
*res = timing_delay(&start, &end);
}
static inline void op_send_pingpong(double*res, void*sbuf, int size, int tagno, void*rbuf) {
struct timespec start, end;
MPI_Barrier(MPI_COMM_WORLD);
/* do monitored operation */
if(rank_world % 2) { /* Odd ranks : Recv - Send */
MPI_Recv(rbuf, size, MPI_BYTE, from, tagno, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(sbuf, size, MPI_BYTE, from, tagno, MPI_COMM_WORLD);
MPI_Barrier(MPI_COMM_WORLD);
get_tick(&start);
MPI_Send(sbuf, size, MPI_BYTE, from, tagno, MPI_COMM_WORLD);
MPI_Recv(rbuf, size, MPI_BYTE, from, tagno, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
get_tick(&end);
} else { /* Even ranks : Send - Recv */
get_tick(&start);
MPI_Send(sbuf, size, MPI_BYTE, to, tagno, MPI_COMM_WORLD);
MPI_Recv(rbuf, size, MPI_BYTE, to, tagno, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
get_tick(&end);
MPI_Barrier(MPI_COMM_WORLD);
MPI_Recv(rbuf, size, MPI_BYTE, to, tagno, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(sbuf, size, MPI_BYTE, to, tagno, MPI_COMM_WORLD);
}
*res = timing_delay(&start, &end) / 2;
}
static inline void op_coll(double*res, void*buff, int size, int tagno, void*rbuf) {
struct timespec start, end;
MPI_Barrier(MPI_COMM_WORLD);
/* do monitored operation */
get_tick(&start);
MPI_Bcast(buff, size, MPI_BYTE, 0, MPI_COMM_WORLD);
get_tick(&end);
*res = timing_delay(&start, &end);
}
static inline void op_a2a(double*res, void*sbuf, int size, int tagno, void*rbuf) {
struct timespec start, end;
MPI_Barrier(MPI_COMM_WORLD);
/* do monitored operation */
get_tick(&start);
MPI_Alltoall(sbuf, size, MPI_BYTE, rbuf, size, MPI_BYTE, MPI_COMM_WORLD);
get_tick(&end);
*res = timing_delay(&start, &end);
}
static inline void op_put(double*res, void*sbuf, int size, int tagno, void*rbuf) {
struct timespec start, end;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, to, 0, win);
/* do monitored operation */
get_tick(&start);
MPI_Put(sbuf, size, MPI_BYTE, to, 0, size, MPI_BYTE, win);
MPI_Win_unlock(to, win);
get_tick(&end);
*res = timing_delay(&start, &end);
}
static inline void op_get(double*res, void*rbuf, int size, int tagno, void*sbuf) {
struct timespec start, end;
MPI_Win_lock(MPI_LOCK_SHARED, to, 0, win);
/* do monitored operation */
get_tick(&start);
MPI_Get(rbuf, size, MPI_BYTE, to, 0, size, MPI_BYTE, win);
MPI_Win_unlock(to, win);
get_tick(&end);
*res = timing_delay(&start, &end);
}
static inline void do_bench(int size, char*sbuf, double*results,
void(*op)(double*, void*, int, int, void*)) {
int iter;
int tagno = 201;
char*rbuf = sbuf ? sbuf + size : NULL;
if(op == op_put || op == op_get){
win = MPI_WIN_NULL;
MPI_Win_create(rbuf, size, 1, MPI_INFO_NULL, MPI_COMM_WORLD, &win);
}
for( iter = 0; iter < NB_ITER; ++iter ) {
op(&results[iter], sbuf, size, tagno, rbuf);
MPI_Barrier(MPI_COMM_WORLD);
}
if(op == op_put || op == op_get){
MPI_Win_free(&win);
win = MPI_WIN_NULL;
}
}
int main(int argc, char* argv[])
{
int size, iter, nop;
char*sbuf = NULL;
double results[NB_ITER];
void(*op)(double*, void*, int, int, void*);
char name[255];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank_world);
MPI_Comm_size(MPI_COMM_WORLD, &size_world);
to = (rank_world + 1) % size_world;
from = (rank_world + size_world - 1) % size_world;
double full_res[FULL_NB_ITER];
for( nop = 0; nop < NB_OPS; ++nop ) {
switch(nop) {
case 0:
op = op_send;
sprintf(name, "MPI_Send");
break;
case 1:
op = op_coll;
sprintf(name, "MPI_Bcast");
break;
case 2:
op = op_a2a;
sprintf(name, "MPI_Alltoall");
break;
case 3:
op = op_send_pingpong;
sprintf(name, "MPI_Send_pp");
break;
case 4:
op = op_put;
sprintf(name, "MPI_Put");
break;
case 5:
op = op_get;
sprintf(name, "MPI_Get");
break;
}
if( 0 == rank_world )
printf("# %s%%%d\n# size \t| latency \t| 10^6 B/s \t| MB/s \t| median \t| q1 \t| q3 \t| d1 \t| d9 \t| avg \t| max\n", name, size_world);
for(size = 0; size < MAX_SIZE; size = ((int)(size * 1.4) > size) ? (size * 1.4) : (size + 1)) {
/* Init buffers */
if( 0 != size ) {
sbuf = (char *)realloc(sbuf, (size_world + 1) * size); /* sbuf + alltoall recv buf */
}
do_bench(size, sbuf, results, op);
MPI_Gather(results, NB_ITER, MPI_DOUBLE, full_res, NB_ITER, MPI_DOUBLE, 0, MPI_COMM_WORLD);
if( 0 == rank_world ) {
qsort(full_res, FULL_NB_ITER, sizeof(double), &comp_double);
const double min_lat = full_res[0];
const double max_lat = full_res[FULL_NB_ITER - 1];
const double med_lat = full_res[(FULL_NB_ITER - 1) / 2];
const double q1_lat = full_res[(FULL_NB_ITER - 1) / 4];
const double q3_lat = full_res[ 3 * (FULL_NB_ITER - 1) / 4];
const double d1_lat = full_res[(FULL_NB_ITER - 1) / 10];
const double d9_lat = full_res[ 9 * (FULL_NB_ITER - 1) / 10];
double avg_lat = 0.0;
for( iter = 0; iter < FULL_NB_ITER; iter++ ){
avg_lat += full_res[iter];
}
avg_lat /= FULL_NB_ITER;
const double bw_million_byte = size / min_lat;
const double bw_mbyte = bw_million_byte / 1.048576;
printf("%9lld\t%9.3lf\t%9.3f\t%9.3f\t%9.3lf\t%9.3lf\t%9.3lf\t%9.3lf\t%9.3lf\t%9.3lf\t%9.3lf",
(long long)size, min_lat, bw_million_byte, bw_mbyte,
med_lat, q1_lat, q3_lat, d1_lat, d9_lat,
avg_lat, max_lat);
printf("\n");
}
}
free(sbuf);
sbuf = NULL;
}
MPI_Finalize();
return EXIT_SUCCESS;
}
|