1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/* Copyright 2010 IPB, INRIA & CNRS
**
** This file originally comes from the Scotch software package for
** static mapping, graph partitioning and sparse matrix ordering.
**
** This software is governed by the CeCILL-B license under French law
** and abiding by the rules of distribution of free software. You can
** use, modify and/or redistribute the software under the terms of the
** CeCILL-B license as circulated by CEA, CNRS and INRIA at the following
** URL: "http://www.cecill.info".
**
** As a counterpart to the access to the source code and rights to copy,
** modify and redistribute granted by the license, users are provided
** only with a limited warranty and the software's author, the holder of
** the economic rights, and the successive licensors have only limited
** liability.
**
** In this respect, the user's attention is drawn to the risks associated
** with loading, using, modifying and/or developing or reproducing the
** software by the user in light of its specific status of free software,
** that may mean that it is complicated to manipulate, and that also
** therefore means that it is reserved for developers and experienced
** professionals having in-depth computer knowledge. Users are therefore
** encouraged to load and test the software's suitability as regards
** their requirements in conditions enabling the security of their
** systems and/or data to be ensured and, more generally, to use and
** operate it in the same conditions as regards security.
**
** The fact that you are presently reading this means that you have had
** knowledge of the CeCILL-B license and that you accept its terms.
**
*/
/************************************************************/
/** **/
/** NAME : fibo.h **/
/** **/
/** AUTHOR : Francois PELLEGRINI **/
/** **/
/** FUNCTION : This module contains the definitions of **/
/** the generic Fibonacci trees. **/
/** **/
/** DATES : # Version 1.0 : from : 01 may 2010 **/
/** to 12 may 2010 **/
/** **/
/** NOTES : # Since this module has originally been **/
/** designed as a gain keeping data **/
/** structure for local optimization **/
/** algorithms, the computation of the **/
/** best node is only done when actually **/
/** searching for it. **/
/** This is most useful when many **/
/** insertions and deletions can take **/
/** place in the mean time. This is why **/
/** this data structure does not keep **/
/** track of the best node, unlike most **/
/** implementations do. **/
/** **/
/************************************************************/
#include "ompi_config.h"
/*
** The type and structure definitions.
*/
/* The doubly linked list structure. */
typedef struct FiboLink_ {
struct FiboNode_ * prevptr; /*+ Pointer to previous sibling element +*/
struct FiboNode_ * nextptr; /*+ Pointer to next sibling element +*/
} FiboLink;
/* The tree node data structure. The deflval
variable merges degree and flag variables.
The degree of a node is smaller than
"bitsizeof (INT)", so it can hold on an
"int". The flag value is stored in the
lowest bit of the value. */
typedef struct FiboNode_ {
struct FiboNode_ * pareptr; /*+ Pointer to parent element, if any +*/
struct FiboNode_ * chldptr; /*+ Pointer to first child element, if any +*/
FiboLink linkdat; /*+ Pointers to sibling elements +*/
int deflval; /*+ Lowest bit: flag value; other bits: degree value +*/
} FiboNode;
/* The tree data structure. The fake dummy node aims
at handling root node insertion without any test.
This is important as many insertions have to be
performed. */
typedef struct FiboTree_ {
FiboNode rootdat; /*+ Dummy node for fast root insertion +*/
FiboNode ** restrict degrtab; /*+ Consolidation array of size "bitsizeof (INT)" +*/
int (* cmpfptr) (const FiboNode * const, const FiboNode * const); /*+ Comparison routine +*/
} FiboTree;
/*
** The marco definitions.
*/
/* This is the core of the module. All of
the algorithms have been de-recursived
and written as macros. */
#define fiboTreeLinkAfter(o,n) do { \
FiboNode * nextptr_loc; \
nextptr_loc = (o)->linkdat.nextptr; \
(n)->linkdat.nextptr = nextptr_loc; \
(n)->linkdat.prevptr = (o); \
nextptr_loc->linkdat.prevptr = (n); \
(o)->linkdat.nextptr = (n); \
} while (0)
#define fiboTreeUnlink(n) do { \
(n)->linkdat.prevptr->linkdat.nextptr = (n)->linkdat.nextptr; \
(n)->linkdat.nextptr->linkdat.prevptr = (n)->linkdat.prevptr; \
} while (0)
#define fiboTreeAddMacro(t,n) do { \
(n)->pareptr = NULL; \
(n)->chldptr = NULL; \
(n)->deflval = 0; \
fiboTreeLinkAfter (&((t)->rootdat), (n)); \
} while (0)
#define fiboTreeMinMacro(t) (fiboTreeConsolidate (t))
#define fiboTreeCutChildren(t,n) do { \
FiboNode * chldptr; \
chldptr = (n)->chldptr; \
if (chldptr != NULL) { \
FiboNode * cendptr; \
cendptr = chldptr; \
do { \
FiboNode * nextptr; \
nextptr = chldptr->linkdat.nextptr; \
chldptr->pareptr = NULL; \
fiboTreeLinkAfter (&((t)->rootdat), chldptr); \
chldptr = nextptr; \
} while (chldptr != cendptr); \
} \
} while (0)
#define fiboTreeDelMacro(t,n) do { \
FiboNode * pareptr; \
FiboNode * rghtptr; \
pareptr = (n)->pareptr; \
fiboTreeUnlink (n); \
fiboTreeCutChildren ((t), (n)); \
if (pareptr == NULL) \
break; \
rghtptr = (n)->linkdat.nextptr; \
while (1) { \
FiboNode * gdpaptr; \
int deflval; \
deflval = pareptr->deflval - 2; \
pareptr->deflval = deflval | 1; \
gdpaptr = pareptr->pareptr; \
pareptr->chldptr = (deflval <= 1) ? NULL : rghtptr; \
if (((deflval & 1) == 0) || (gdpaptr == NULL)) \
break; \
rghtptr = pareptr->linkdat.nextptr; \
fiboTreeUnlink (pareptr); \
pareptr->pareptr = NULL; \
fiboTreeLinkAfter (&((t)->rootdat), pareptr); \
pareptr = gdpaptr; \
} \
} while (0)
/*
** The function prototypes.
*/
/* This set of definitions allows the user
to specify whether he prefers to use
the fibonacci routines as macros or as
regular functions, for instance for
debugging. */
#define fiboTreeAdd fiboTreeAddMacro
/* #define fiboTreeDel fiboTreeDelMacro */
/* #define fiboTreeMin fiboTreeMinMacro */
#ifndef FIBO
#define static
#endif
OMPI_HIDDEN int tm_fiboTreeInit (FiboTree * const, int (*) (const FiboNode * const, const FiboNode * const));
OMPI_HIDDEN void tm_fiboTreeExit (FiboTree * const);
OMPI_HIDDEN void tm_fiboTreeFree (FiboTree * const);
#ifndef fiboTreeAdd
void fiboTreeAdd (FiboTree * const, FiboNode * const);
#endif /* fiboTreeAdd */
#ifndef fiboTreeDel
OMPI_HIDDEN void tm_fiboTreeDel (FiboTree * const, FiboNode * const);
#endif /* fiboTreeDel */
#ifndef treematch_fiboTreeMin
OMPI_HIDDEN FiboNode * tm_fiboTreeMin (FiboTree * const);
#endif /* treematch_fiboTreeMin */
#ifdef FIBO_DEBUG
int fiboTreeCheck (const FiboTree * const);
static int fiboTreeCheck2 (const FiboNode * const);
#endif /* FIBO_DEBUG */
#undef static
|