1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
#include <stdlib.h>
#include <stdio.h>
#include "k-partitioning.h"
#include "tm_mt.h"
#include "tm_verbose.h"
static void memory_allocation(PriorityQueue ** Q, PriorityQueue ** Qinst, double *** D, int n, int k);
static void initialization(int * const part, double ** const matrice, PriorityQueue * const Qpart, PriorityQueue * const Q, PriorityQueue * const Qinst, double ** const D, int n, int k, int * const deficit, int * const surplus);
static void algo(int * const part, double ** const matrice, PriorityQueue * const Qpart, PriorityQueue * const Q, PriorityQueue * const Qinst, double ** const D, int n, int * const deficit, int * const surplus);
static double nextGain(PriorityQueue * const Qpart, PriorityQueue * const Q, int * const deficit, int * const surplus);
static void balancing(int n, int deficit, int surplus, double ** const D, int * const part);
static void destruction(PriorityQueue * Qpart, PriorityQueue * Q, PriorityQueue * Qinst, double ** D, int n, int k);
static void allocate_vertex2(int u, int *res, double **comm, int n, int *size, int max_size);
static double eval_cost2(int *,int,double **);
static int *kpartition_greedy2(int k, double **comm, int n, int nb_try_max, int *constraints, int nb_constraints);
static int* build_p_vector(double **comm, int n, int k, int greedy_trials, int * constraints, int nb_constraints);
int* tm_kPartitioning(double ** comm, int n, int k, int * constraints, int nb_constraints, int greedy_trials)
{
/* ##### declarations & allocations ##### */
PriorityQueue Qpart, *Q = NULL, *Qinst = NULL;
double **D = NULL;
int deficit, surplus, *part = NULL;
int real_n = n-nb_constraints;
part = build_p_vector(comm, n, k, greedy_trials, constraints, nb_constraints);
memory_allocation(&Q, &Qinst, &D, real_n, k);
/* ##### Initialization ##### */
initialization(part, comm, &Qpart, Q, Qinst, D, real_n, k, &deficit, &surplus);
/* ##### Main loop ##### */
while((nextGain(&Qpart, Q, &deficit, &surplus))>0)
{
algo(part, comm, &Qpart, Q, Qinst, D, real_n, &deficit, &surplus);
}
/* ##### Balancing the partition ##### */
balancing(real_n, deficit, surplus, D, part); /*if partition isn't balanced we have to make one last move*/
/* ##### Memory deallocation ##### */
destruction(&Qpart, Q, Qinst, D, real_n, k);
return part;
}
static void memory_allocation(PriorityQueue ** Q, PriorityQueue ** Qinst, double *** D, int n, int k)
{
int i;
*Q = calloc(k, sizeof(PriorityQueue)); /*one Q for each partition*/
*Qinst = calloc(n, sizeof(PriorityQueue)); /*one Qinst for each vertex*/
*D = malloc(sizeof(double *) * n); /*D's size is n * k*/
for(i=0; i < n; ++i)
(*D)[i] = calloc(k, sizeof(double));
}
static void initialization(int * const part, double ** const matrice, PriorityQueue * const Qpart, PriorityQueue * const Q, PriorityQueue * const Qinst, double ** const D, int n, int k, int * const deficit, int * const surplus)
{
int i,j;
/* ##### PriorityQueue initializations ##### */
/* We initialize Qpart with a size of k because it contains the subsets's indexes. */
PQ_init(Qpart, k);
/* We initialize each Q[i] with a size of n because each vertex is in one of these queue at any time. */
/* However we could set a size of (n/k)+1 as this is the maximum size of a subset when the partition is not balanced. */
for(i=0; i<k; ++i)
PQ_init(&Q[i], n);
/* We initialize each Qinst[i] with a size of k because fo each vertex i, Qinst[i] contains the D(i,j) values for j = 0...(k-1) */
for(i=0; i<n; ++i)
PQ_init(&Qinst[i], k);
/* ##### Computing the D(i,j) values ##### */
for(i=0; i < n; ++i) /*for each vertex i*/
{
for(j=0; j < n; ++j) /*and for each vertex j*/
{
D[i][part[j]] += matrice[i][j];
}
}
/* ##### Filling up the queues ##### */
/* ### Qinst ### */
for(i=0; i < n; ++i) /*for each vertex i*/
for(j=0; j < k; ++j) /*and for each subset j*/
PQ_insert(&Qinst[i], j, D[i][j]); /*we insert the corresponding D(i,j) value in Qinst[i]*/
/* ### Q ### */
for(i=0; i<n; ++i) /*for each vertex i*/
PQ_insert(&Q[part[i]], i, PQ_findMaxKey(&Qinst[i])-D[i][part[i]]); /*we insert in Q[part[i]] the vertex i with its highest possible gain*/
/* ### Qpart ### */
for(i=0; i < k; ++i) /*for each subset i*/
PQ_insert(Qpart, i, PQ_findMaxKey(&Q[i])); /*we insert it in Qpart with the highest possible gain by one of its vertex as key*/
/* ##### Initialization of deficit/surplus ##### */
*surplus = *deficit = 0;
}
static void algo(int * const part, double ** const matrice, PriorityQueue * const Qpart, PriorityQueue * const Q, PriorityQueue * const Qinst, double ** const D, int n, int * const deficit, int * const surplus)
{
int p,u,v,j;
double d;
if(*deficit == *surplus) /*if the current partition is balanced*/
{
p = PQ_deleteMax(Qpart); /*we get the subset with the highest possible gain in p and remove it from Qpart*/
u = PQ_deleteMax(&Q[p]); /*then we get the vertex with this highest possible gain in u and remove it from Q[p] */
*deficit = part[u]; /*p becomes the deficit */
}
else /*the current partition is not balanced*/
{
u = PQ_deleteMax(&Q[*surplus]); /*we get the vertex with the highest possible gain in surplus and remove it from Q[surplus] */
PQ_delete(Qpart, part[u]); /*then we remove surplus from Qpart (note that u is from surplus so part[u] is surplus) */
}
d = PQ_findMaxKey(&Q[part[u]]); /*we get the next highest possible gain in part[u] (without taking u in account as we already removed it from Q[part[u])*/
PQ_insert(Qpart, part[u], d); /*we put part[u] back in Qpart with its new highest possible gain*/
j = PQ_deleteMax(&Qinst[u]); /*we get from Qinst[u] the subset in which we have to move u to get the highest gain.*/
if ( j < 0){
if(tm_get_verbose_level() >= CRITICAL)
fprintf(stderr,"Error Max element in priority queue negative!\n");
exit(-1);
}
*surplus = j; /*this subset becomes surplus*/
for(v=0; v < n; ++v) /*we scan though all edges (u,v) */
{
j = part[u]; /*we set j to the starting subset */
D[v][j]= D[v][j] - matrice[u][v]; /*we compute the new D[v, i] (here j has the value of the starting subset of u, that's why we say i) */
PQ_adjustKey(&Qinst[v], j, D[v][j]); /*we update this gain in Qinst[v]*/
j = *surplus; /*we put back the arrival subset in j*/
D[v][j] = D[v][j] + matrice[u][v]; /*matrice[u][v]; we compute the new D[v, j]*/
PQ_adjustKey(&Qinst[v], j, D[v][j]);/*we update this gain in Qinst[v]*/
d = PQ_findMaxKey(&Qinst[v]) - D[v][part[v]]; /*we compute v's new highest possible gain*/
PQ_adjustKey(&Q[part[v]], v, d); /*we update it in Q[p[v]]*/
d = PQ_findMaxKey(&Q[part[v]]); /*we get the highest possible gain in v's subset*/
PQ_adjustKey(Qpart, part[v], d); /*we update it in Qpart*/
}
part[u] = *surplus; /*we move u from i to j (here surplus has the value of j the arrival subset)*/
d = PQ_findMaxKey(&Qinst[u]) - D[u][part[u]]; /*we compute the new u's highest possible gain*/
if(!PQ_isEmpty(&Qinst[u])) /*if at least one more move of u is possible*/
PQ_insert(&Q[part[u]], u, d); /*we insert u in the Q queue of its new subset*/
PQ_adjustKey(Qpart, part[u], d); /*we update the new highest possible gain in u's subset*/
}
static double nextGain(PriorityQueue * const Qpart, PriorityQueue * const Q, int * const deficit, int * const surplus)
{
double res;
if(*deficit == *surplus) /*if the current partition is balanced*/
res = PQ_findMaxKey(Qpart); /*we get the highest possible gain*/
else /*the current partition is not balanced*/
res = PQ_findMaxKey(&Q[*surplus]); /*we get the highest possible gain from surplus*/
return res;
}
static void balancing(int n, int deficit, int surplus, double ** const D, int * const part)
{
if(surplus != deficit) /*if the current partition is not balanced*/
{
int i;
PriorityQueue moves; /*we use a queue to store the possible moves from surplus to deficit*/
PQ_init(&moves, n);
for(i=0; i<n; ++i) /*for each vertex*/
{
if(part[i] == surplus) /*if i is from surplus*/
PQ_insert(&moves, i, D[i][deficit]-D[i][surplus]); /*we insert i in moves with the gain we get from moving i from surplus to deficit as key */
}
part[PQ_deleteMax(&moves)] = deficit; /*we put the i from moves with the highest gain in deficit*/
PQ_exit(&moves);
}
}
static void destruction(PriorityQueue * Qpart, PriorityQueue * Q, PriorityQueue * Qinst, double ** D, int n, int k)
{
int i;
PQ_exit(Qpart);
for(i=0; i<k; ++i)
PQ_exit(&Q[i]);
free(Q);
for(i=0; i<n; ++i)
{
PQ_exit(&Qinst[i]);
}
free(Qinst);
for(i=0; i<n; ++i)
free(D[i]);
free(D);
}
static int *kpartition_greedy2(int k, double **comm, int n, int nb_try_max, int *constraints, int nb_constraints)
{
int *res = NULL, *best_res=NULL, *size = NULL;
int i,j,nb_trials;
int max_size;
double cost, best_cost = -1;
for( nb_trials = 0 ; nb_trials < nb_try_max ; nb_trials++ ){
res = (int *)malloc(sizeof(int)*n);
for ( i = 0 ; i < n ; ++i )
res[i] = -1;
size = (int *)calloc(k,sizeof(int));
max_size = n/k;
/* put "dumb" vertices in the correct partition if there are any*/
if (nb_constraints){ /*if there are at least one constraint*/
int nb_real_nodes = n-nb_constraints; /*this is the number of "real" nodes by opposition to the dumb ones*/
for(i=0; i<nb_constraints; ++i) /*for each constraint*/
{
int i_part = constraints[i]/max_size; /*we compute its partition*/
res[nb_real_nodes+i] = i_part; /*and we set it in partition vector*/
size[i_part]++; /*we update the partition's size*/
}
}
/* choose k initial "true" vertices at random and put them in a different partition */
for ( i = 0 ; i < k ; ++i ){
/* if the partition is full of dumb vertices go to next partition*/
if(size[i] >= max_size)
continue;
/* find a vertex not already partitionned*/
do{
/* call the mersenne twister PRNG of tm_mt.c*/
j = tm_genrand_int32() % n;
} while ( res[j] != -1 );
/* allocate and update size of partition*/
res[j] = i;
/* printf("random: %d -> %d\n",j,i); */
size[i]++;
}
/* allocate each unallocated vertices in the partition that maximize the communication*/
for( i = 0 ; i < n ; ++i )
if( res[i] == -1)
allocate_vertex2(i, res, comm, n-nb_constraints, size, max_size);
cost = eval_cost2(res,n-nb_constraints,comm);
/*print_1D_tab(res,n);
printf("cost=%.2f\n",cost);*/
if((cost<best_cost) || (best_cost == -1)){
best_cost=cost;
free(best_res);
best_res=res;
}else
free(res);
free(size);
}
/*print_1D_tab(best_res,n);
printf("best_cost=%.2f\n",best_cost);
*/
return best_res;
}
static void allocate_vertex2(int u, int *res, double **comm, int n, int *size, int max_size)
{
int i,best_part = -1;
double cost, best_cost = -1;
/*printf("\n");
print_1D_tab(res,n);*/
for( i = 0 ; i < n ; ++i){
if (( res[i] != -1 ) && ( size[res[i]] < max_size )){
cost = comm[u][i];
if (( cost > best_cost)){
best_cost = cost;
best_part = res[i];
}
}
}
/* printf("size[%d]: %d\n",best_part, size[best_part]);*/
/* printf("putting(%.2f): %d -> %d\n",best_cost, u, best_part); */
res[u] = best_part;
size[best_part]++;
}
static double eval_cost2(int *partition, int n, double **comm)
{
double cost = 0;
int i,j;
for( i = 0 ; i < n ; ++i )
for( j = i+1 ; j < n ; ++j )
if(partition[i] != partition[j])
cost += comm[i][j];
return cost;
}
static int* build_p_vector(double **comm, int n, int k, int greedy_trials, int * constraints, int nb_constraints)
{
int * part = NULL;
if(greedy_trials>0) /*if greedy_trials > 0 then we use kpartition_greedy with greedy_trials trials*/
{
part = kpartition_greedy2(k, comm, n, greedy_trials, constraints, nb_constraints);
}
else
{
int * size = calloc(k, sizeof(int));
int i,j;
int nodes_per_part = n/k;
int nb_real_nodes = n-nb_constraints;
part = malloc(sizeof(int) * n);
for(i=0; i<nb_constraints; i++) /*for each constraints*/
{
int i_part = constraints[i]/nodes_per_part; /*we compute the partition where we have to put this constraint*/
part[nb_real_nodes+i] = i_part;
size[i_part]++;
}
j=0;
/* now we have to fill the partitions with the "real" nodes */
for(i=0; i<nb_real_nodes; i++) /*for each node*/
{
if(size[j] < nodes_per_part) /*if j partition isn't full*/
{
size[j]++;
part[i] = j; /*then we put the node in this part*/
}
else /*otherwise we decrement i to get the same node in the next loop*/
{
i--;
}
j = (j+1)%k; /*and we change j to the next partition*/
}
free(size);
}
return part;
}
|