File: k-partitioning.c

package info (click to toggle)
openmpi 5.0.8-4
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 201,684 kB
  • sloc: ansic: 613,078; makefile: 42,353; sh: 11,194; javascript: 9,244; f90: 7,052; java: 6,404; perl: 5,179; python: 1,859; lex: 740; fortran: 61; cpp: 20; tcl: 12
file content (339 lines) | stat: -rw-r--r-- 13,000 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#include <stdlib.h>
#include <stdio.h>
#include "k-partitioning.h"
#include "tm_mt.h"
#include "tm_verbose.h"

static void memory_allocation(PriorityQueue ** Q, PriorityQueue ** Qinst, double *** D, int n, int k);
static void initialization(int * const part, double ** const matrice, PriorityQueue * const Qpart, PriorityQueue * const Q, PriorityQueue * const Qinst, double ** const D, int n, int k, int * const deficit, int * const surplus);
static void algo(int * const part, double ** const matrice, PriorityQueue * const Qpart, PriorityQueue * const Q, PriorityQueue * const Qinst, double ** const D, int n,  int * const deficit, int * const surplus);
static double nextGain(PriorityQueue * const Qpart, PriorityQueue * const Q, int * const deficit, int * const surplus);
static void balancing(int n, int deficit, int surplus, double ** const D, int * const part);
static void destruction(PriorityQueue * Qpart, PriorityQueue * Q, PriorityQueue * Qinst, double ** D, int n, int k);

static void allocate_vertex2(int u, int *res, double **comm, int n, int *size, int max_size);
static double eval_cost2(int *,int,double **);
static int  *kpartition_greedy2(int k, double **comm, int n, int nb_try_max, int *constraints, int nb_constraints);
static int*  build_p_vector(double **comm, int n, int k, int greedy_trials, int * constraints, int nb_constraints);

int* tm_kPartitioning(double ** comm, int n, int k, int * constraints, int nb_constraints, int greedy_trials)
{
  /* ##### declarations & allocations ##### */

  PriorityQueue Qpart, *Q = NULL, *Qinst = NULL;
  double **D = NULL;
  int deficit, surplus, *part = NULL;
  int real_n = n-nb_constraints;

  part = build_p_vector(comm, n, k, greedy_trials, constraints, nb_constraints);

  memory_allocation(&Q, &Qinst, &D, real_n, k);

  /* ##### Initialization ##### */

  initialization(part, comm, &Qpart, Q, Qinst, D, real_n, k, &deficit, &surplus);

  /* ##### Main loop ##### */
  while((nextGain(&Qpart, Q, &deficit, &surplus))>0)
    {
      algo(part, comm, &Qpart, Q, Qinst, D, real_n, &deficit, &surplus);
    }

  /* ##### Balancing the partition  ##### */
  balancing(real_n, deficit, surplus, D, part); /*if partition isn't balanced we have to make one last move*/

  /* ##### Memory deallocation ##### */
  destruction(&Qpart, Q, Qinst, D, real_n, k);

  return part;
}

static void memory_allocation(PriorityQueue ** Q, PriorityQueue ** Qinst, double *** D, int n, int k)
{
  int i;
  *Q = calloc(k, sizeof(PriorityQueue)); /*one Q for each partition*/
  *Qinst = calloc(n, sizeof(PriorityQueue)); /*one Qinst for each vertex*/
  *D = malloc(sizeof(double *) * n); /*D's size is n * k*/
  for(i=0; i < n; ++i)
    (*D)[i] = calloc(k, sizeof(double));
}

static void initialization(int * const part, double ** const matrice, PriorityQueue * const Qpart, PriorityQueue * const Q, PriorityQueue * const Qinst, double ** const D, int n, int k, int * const deficit, int * const surplus)
{
  int i,j;

  /* ##### PriorityQueue initializations ##### */
  /* We initialize Qpart with a size of k because it contains the subsets's indexes. */
  PQ_init(Qpart, k);

  /* We initialize each Q[i] with a size of n because each vertex is in one of these queue at any time. */
  /* However we could set a size of (n/k)+1 as this is the maximum size of a subset when the partition is not balanced. */
  for(i=0; i<k; ++i)
    PQ_init(&Q[i], n);

  /* We initialize each Qinst[i] with a size of k because fo each vertex i, Qinst[i] contains the D(i,j) values for j = 0...(k-1) */
  for(i=0; i<n; ++i)
    PQ_init(&Qinst[i], k);

  /* ##### Computing the D(i,j) values ##### */
  for(i=0; i < n; ++i) /*for each vertex i*/
    {
      for(j=0; j < n; ++j) /*and for each vertex j*/
	{
	  D[i][part[j]] += matrice[i][j];
	}
    }

  /* ##### Filling up the queues ##### */
  /* ### Qinst ### */
  for(i=0; i < n; ++i) /*for each vertex i*/
    for(j=0; j < k; ++j) /*and for each subset j*/
      PQ_insert(&Qinst[i], j, D[i][j]); /*we insert the corresponding D(i,j) value in Qinst[i]*/

  /* ### Q ### */
  for(i=0; i<n; ++i) /*for each vertex i*/
    PQ_insert(&Q[part[i]], i, PQ_findMaxKey(&Qinst[i])-D[i][part[i]]); /*we insert in Q[part[i]] the vertex i with its highest possible gain*/

  /* ### Qpart ### */
  for(i=0; i < k; ++i) /*for each subset i*/
    PQ_insert(Qpart, i, PQ_findMaxKey(&Q[i])); /*we insert it in Qpart with the highest possible gain by one of its vertex as key*/


  /* ##### Initialization of deficit/surplus ##### */
  *surplus = *deficit = 0;
}

static void algo(int * const part, double ** const matrice, PriorityQueue * const Qpart, PriorityQueue * const Q, PriorityQueue * const Qinst, double ** const D, int n, int * const deficit, int * const surplus)
{
  int p,u,v,j;
  double d;
  if(*deficit == *surplus) /*if the current partition is balanced*/
    {
      p = PQ_deleteMax(Qpart); /*we get the subset with the highest possible gain in p and remove it from Qpart*/
      u = PQ_deleteMax(&Q[p]); /*then we get the vertex with this highest possible gain in u and remove it from Q[p] */
      *deficit = part[u]; /*p becomes the deficit */
    }
  else /*the current partition is not balanced*/
    {
      u = PQ_deleteMax(&Q[*surplus]); /*we get the vertex with the highest possible gain in surplus and remove it from Q[surplus] */
      PQ_delete(Qpart, part[u]); /*then we remove surplus from Qpart  (note that u is from surplus so part[u] is surplus) */
    }
  d = PQ_findMaxKey(&Q[part[u]]); /*we get the next highest possible gain in part[u] (without taking u in account as we already removed it from Q[part[u])*/
  PQ_insert(Qpart, part[u], d); /*we put part[u] back in Qpart with its new highest possible gain*/
  j = PQ_deleteMax(&Qinst[u]); /*we get from Qinst[u] the subset in which we have to move u to get the highest gain.*/
  if ( j < 0){
    if(tm_get_verbose_level() >= CRITICAL)
      fprintf(stderr,"Error Max element in priority queue negative!\n");
    exit(-1);
  }
  *surplus = j; /*this subset becomes surplus*/

  for(v=0; v < n; ++v) /*we scan though all edges (u,v) */
    {
      j = part[u]; /*we set j to the starting subset */
      D[v][j]= D[v][j] - matrice[u][v]; /*we compute the new D[v, i] (here j has the value of the starting subset of u, that's why we say i) */
      PQ_adjustKey(&Qinst[v], j, D[v][j]); /*we update this gain in Qinst[v]*/
      j = *surplus; /*we put back the arrival subset in j*/
      D[v][j] = D[v][j] + matrice[u][v]; /*matrice[u][v]; we compute the new D[v, j]*/
      PQ_adjustKey(&Qinst[v], j, D[v][j]);/*we update this gain in Qinst[v]*/
      d = PQ_findMaxKey(&Qinst[v]) - D[v][part[v]]; /*we compute v's new highest possible gain*/
      PQ_adjustKey(&Q[part[v]], v, d); /*we update it in Q[p[v]]*/
      d = PQ_findMaxKey(&Q[part[v]]); /*we get the highest possible gain in v's subset*/
      PQ_adjustKey(Qpart, part[v], d); /*we update it in Qpart*/
    }
  part[u] = *surplus; /*we move u from i to j (here surplus has the value of j the arrival subset)*/

  d = PQ_findMaxKey(&Qinst[u]) - D[u][part[u]]; /*we compute the new u's highest possible gain*/
  if(!PQ_isEmpty(&Qinst[u])) /*if at least one more move of u is possible*/
    PQ_insert(&Q[part[u]], u, d); /*we insert u in the Q queue of its new subset*/
  PQ_adjustKey(Qpart, part[u], d); /*we update the new highest possible gain in u's subset*/
}

static double nextGain(PriorityQueue * const Qpart, PriorityQueue * const Q, int * const deficit, int * const surplus)
{
  double res;
  if(*deficit == *surplus) /*if the current partition is balanced*/
    res = PQ_findMaxKey(Qpart); /*we get the highest possible gain*/
  else /*the current partition is not balanced*/
    res = PQ_findMaxKey(&Q[*surplus]); /*we get the highest possible gain from surplus*/
  return res;
}

static void balancing(int n, int deficit, int surplus, double ** const D, int * const part)
{
  if(surplus != deficit) /*if the current partition is not balanced*/
    {
      int i;
      PriorityQueue moves; /*we use a queue to store the possible moves from surplus to deficit*/
      PQ_init(&moves, n);
      for(i=0; i<n; ++i) /*for each vertex*/
	{
	  if(part[i] == surplus) /*if i is from surplus*/
	    PQ_insert(&moves, i, D[i][deficit]-D[i][surplus]); /*we insert i in moves with the gain we get from moving i from surplus to deficit as key */
	}
      part[PQ_deleteMax(&moves)] = deficit; /*we put the i from moves with the highest gain in deficit*/
      PQ_exit(&moves);
    }
}

static void destruction(PriorityQueue * Qpart, PriorityQueue * Q, PriorityQueue * Qinst, double ** D, int n, int k)
{
  int i;
  PQ_exit(Qpart);
  for(i=0; i<k; ++i)
    PQ_exit(&Q[i]);
  free(Q);
  for(i=0; i<n; ++i)
    {
      PQ_exit(&Qinst[i]);
    }
  free(Qinst);

  for(i=0; i<n; ++i)
    free(D[i]);
  free(D);
}


static int  *kpartition_greedy2(int k, double **comm, int n, int nb_try_max, int *constraints, int nb_constraints)
{
  int *res = NULL, *best_res=NULL, *size = NULL;
  int i,j,nb_trials;
  int max_size;
  double cost, best_cost = -1;

  for( nb_trials = 0 ; nb_trials < nb_try_max ; nb_trials++ ){
    res = (int *)malloc(sizeof(int)*n);
    for ( i = 0 ; i < n ; ++i )
      res[i] = -1;

    size = (int *)calloc(k,sizeof(int));
    max_size = n/k;

    /* put "dumb" vertices in the correct partition if there are any*/
    if (nb_constraints){ /*if there are at least one constraint*/
      int nb_real_nodes = n-nb_constraints; /*this is the number of "real" nodes by opposition to the dumb ones*/
      for(i=0; i<nb_constraints; ++i) /*for each constraint*/
	{
	  int i_part = constraints[i]/max_size; /*we compute its partition*/
	  res[nb_real_nodes+i] = i_part; /*and we set it in partition vector*/
	  size[i_part]++; /*we update the partition's size*/
	}
    }

    /* choose k initial "true" vertices at random and put them in a different partition */
    for ( i = 0 ; i < k ; ++i ){
      /* if the partition is full of dumb vertices go to next partition*/
      if(size[i] >= max_size)
	continue;
      /* find a vertex not already partitionned*/
      do{
	/* call the mersenne twister PRNG of tm_mt.c*/
	j =  tm_genrand_int32() % n;
      } while ( res[j] != -1 );
      /* allocate and update size of partition*/
      res[j] = i;
      /* printf("random: %d -> %d\n",j,i); */
      size[i]++;
    }

    /* allocate each unallocated vertices in the partition that maximize the communication*/
    for( i = 0 ;  i < n ; ++i )
      if( res[i] == -1)
	allocate_vertex2(i, res, comm, n-nb_constraints, size, max_size);

    cost = eval_cost2(res,n-nb_constraints,comm);
    /*print_1D_tab(res,n);
    printf("cost=%.2f\n",cost);*/
    if((cost<best_cost) || (best_cost == -1)){
      best_cost=cost;
      free(best_res);
      best_res=res;
    }else
      free(res);

    free(size);
  }

  /*print_1D_tab(best_res,n);
  printf("best_cost=%.2f\n",best_cost);
  */
  return best_res;
}

static void allocate_vertex2(int u, int *res, double **comm, int n, int *size, int max_size)
{
  int i,best_part = -1;
  double cost, best_cost = -1;

  /*printf("\n");
    print_1D_tab(res,n);*/
  for( i = 0 ; i < n ; ++i){
    if (( res[i] != -1 ) && ( size[res[i]] < max_size )){
      cost = comm[u][i];
      if (( cost > best_cost)){
	best_cost = cost;
	best_part = res[i];
      }
    }
  }

  /*  printf("size[%d]: %d\n",best_part, size[best_part]);*/
  /* printf("putting(%.2f): %d -> %d\n",best_cost, u, best_part); */

  res[u] = best_part;
  size[best_part]++;
}

static double eval_cost2(int *partition, int n, double **comm)
{
  double cost = 0;
  int i,j;

  for( i = 0 ; i < n ; ++i )
    for( j = i+1 ; j < n ; ++j )
      if(partition[i] != partition[j])
	cost += comm[i][j];

  return cost;
}

static int* build_p_vector(double **comm, int n, int k, int greedy_trials, int * constraints, int nb_constraints)
{
  int * part = NULL;
  if(greedy_trials>0) /*if greedy_trials > 0 then we use kpartition_greedy with greedy_trials trials*/
    {
      part = kpartition_greedy2(k, comm, n, greedy_trials, constraints, nb_constraints);
    }
  else
    {
      int * size = calloc(k, sizeof(int));
      int i,j;
      int nodes_per_part = n/k;
      int nb_real_nodes = n-nb_constraints;
      part = malloc(sizeof(int) * n);
      for(i=0; i<nb_constraints; i++) /*for each constraints*/
	{
	  int i_part = constraints[i]/nodes_per_part; /*we compute the partition where we have to put this constraint*/
	  part[nb_real_nodes+i] = i_part;
	  size[i_part]++;
	}
      j=0;
      /* now we have to fill the partitions with the "real" nodes */
      for(i=0; i<nb_real_nodes; i++) /*for each node*/
	{
	  if(size[j] < nodes_per_part) /*if j partition isn't full*/
	    {
	      size[j]++;
	      part[i] = j; /*then we put the node in this part*/
	    }
	  else /*otherwise we decrement i to get the same node in the next loop*/
	    {
	      i--;
	    }
	  j = (j+1)%k; /*and we change j to the next partition*/
	}
      free(size);
    }
  return part;
}