1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
|
.\" Man page generated from reStructuredText.
.
.TH "MPI_IREDUCE" "3" "May 30, 2025" "" "Open MPI"
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.INDENT 0.0
.INDENT 3.5
.UNINDENT
.UNINDENT
.sp
\fI\%MPI_Reduce\fP, \fI\%MPI_Ireduce\fP, \fI\%MPI_Reduce_init\fP \- Reduces values on all
processes within a group.
.SH SYNTAX
.SS C Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <mpi.h>
int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm)
int MPI_Ireduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm, MPI_Request *request)
int MPI_Reduce_init(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm, MPI_Info info, MPI_Request *request)
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Fortran Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
USE MPI
! or the older form: INCLUDE \(aqmpif.h\(aq
MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM,
IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR
MPI_IREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM,
REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR
MPI_REDUCE_INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM,
INFO, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, INFO, REQUEST, IERROR
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Fortran 2008 Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
USE mpi_f08
MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Ireduce(sendbuf, recvbuf, count, datatype, op, root, comm, request,
ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Reduce_init(sendbuf, recvbuf, count, datatype, op, root, comm, info, request,
ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
.ft P
.fi
.UNINDENT
.UNINDENT
.SH INPUT PARAMETERS
.INDENT 0.0
.IP \(bu 2
\fBsendbuf\fP: Address of send buffer (choice).
.IP \(bu 2
\fBcount\fP: Number of elements in send buffer (integer).
.IP \(bu 2
\fBdatatype\fP: Data type of elements of send buffer (handle).
.IP \(bu 2
\fBop\fP: Reduce operation (handle).
.IP \(bu 2
\fBroot\fP: Rank of root process (integer).
.IP \(bu 2
\fBcomm\fP: Communicator (handle).
.IP \(bu 2
\fBinfo\fP: Info (handle, persistent).
.UNINDENT
.SH OUTPUT PARAMETERS
.INDENT 0.0
.IP \(bu 2
\fBrecvbuf\fP: Address of receive buffer (choice, significant only at root).
.IP \(bu 2
\fBrequest\fP: Request (handle, non\-blocking only).
.IP \(bu 2
\fBierror\fP: Fortran only: Error status (integer).
.UNINDENT
.SH DESCRIPTION
.sp
The global reduce functions (\fI\%MPI_Reduce\fP, \fI\%MPI_Op_create\fP, \fI\%MPI_Op_free\fP,
\fI\%MPI_Allreduce\fP, \fI\%MPI_Reduce_scatter\fP, MPI_Scan) perform a global reduce
operation (such as sum, max, logical AND, etc.) across all the members
of a group. The reduction operation can be either one of a predefined
list of operations, or a user\-defined operation. The global reduction
functions come in several flavors: a reduce that returns the result of
the reduction at one node, an all\-reduce that returns this result at all
nodes, and a scan (parallel prefix) operation. In addition, a
reduce\-scatter operation combines the functionality of a reduce and a
scatter operation.
.sp
\fI\%MPI_Reduce\fP combines the elements provided in the input buffer of each
process in the group, using the operation op, and returns the combined
value in the output buffer of the process with rank root. The input
buffer is defined by the arguments sendbuf, count, and datatype; the
output buffer is defined by the arguments recvbuf, count, and datatype;
both have the same number of elements, with the same type. The routine
is called by all group members using the same arguments for count,
datatype, op, root, and comm. Thus, all processes provide input buffers
and output buffers of the same length, with elements of the same type.
Each process can provide one element, or a sequence of elements, in
which case the combine operation is executed element\-wise on each entry
of the sequence. For example, if the operation is MPI_MAX and the send
buffer contains two elements that are floating\-point numbers (count = 2
and datatype = MPI_FLOAT), then recvbuf(1) = global max (sendbuf(1)) and
recvbuf(2) = global max(sendbuf(2)).
.SH USE OF IN-PLACE OPTION
.sp
When the communicator is an intracommunicator, you can perform a reduce
operation in\-place (the output buffer is used as the input buffer). Use
the variable MPI_IN_PLACE as the value of the root process \fIsendbuf\fP\&. In
this case, the input data is taken at the root from the receive buffer,
where it will be replaced by the output data.
.sp
Note that MPI_IN_PLACE is a special kind of value; it has the same
restrictions on its use as MPI_BOTTOM.
.sp
Because the in\-place option converts the receive buffer into a
send\-and\-receive buffer, a Fortran binding that includes INTENT must
mark these as INOUT, not OUT.
.SH WHEN COMMUNICATOR IS AN INTER-COMMUNICATOR
.sp
When the communicator is an inter\-communicator, the root process in the
first group combines data from all the processes in the second group and
then performs the \fIop\fP operation. The first group defines the root
process. That process uses MPI_ROOT as the value of its \fIroot\fP argument.
The remaining processes use \fBMPI_PROC_NULL\fP as the value of their \fIroot\fP
argument. All processes in the second group use the rank of that root
process in the first group as the value of their \fIroot\fP argument. Only
the send buffer arguments are significant in the second group, and only
the receive buffer arguments are significant in the root process of the
first group.
.SH PREDEFINED REDUCE OPERATIONS
.sp
The set of predefined operations provided by MPI is listed below
(Predefined Reduce Operations). That section also enumerates the
datatypes each operation can be applied to. In addition, users may
define their own operations that can be overloaded to operate on several
datatypes, either basic or derived. This is further explained in the
description of the user\-defined operations (see the man pages for
\fI\%MPI_Op_create\fP and MPI_Op_free).
.sp
The operation op is always assumed to be associative. All predefined
operations are also assumed to be commutative. Users may define
operations that are assumed to be associative, but not commutative. The
\(ga\(gacanonical’’ evaluation order of a reduction is determined by the
ranks of the processes in the group. However, the implementation can
take advantage of associativity, or associativity and commutativity, in
order to change the order of evaluation. This may change the result of
the reduction for operations that are not strictly associative and
commutative, such as floating point addition.
.sp
Predefined operators work only with the MPI types listed below
(Predefined Reduce Operations, and the section MINLOC and MAXLOC,
below). User\-defined operators may operate on general, derived
datatypes. In this case, each argument that the reduce operation is
applied to is one element described by such a datatype, which may
contain several basic values. This is further explained in Section 4.9.4
of the MPI Standard, “User\-Defined Operations.”
.sp
The following predefined operations are supplied for \fI\%MPI_Reduce\fP and
related functions \fI\%MPI_Allreduce\fP, \fI\%MPI_Reduce_scatter\fP, and \fI\%MPI_Scan\fP\&. These
operations are invoked by placing the following in op:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
Name Meaning
\-\-\-\-\-\-\-\-\- \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit\-wise and
MPI_LOR logical or
MPI_BOR bit\-wise or
MPI_LXOR logical xor
MPI_BXOR bit\-wise xor
MPI_MAXLOC max value and location
MPI_MINLOC min value and location
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The two operations MPI_MINLOC and MPI_MAXLOC are discussed separately
below (MINLOC and MAXLOC). For the other predefined operations, we
enumerate below the allowed combinations of op and datatype arguments.
First, define groups of MPI basic datatypes in the following way:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
C integer: MPI_INT, MPI_LONG, MPI_SHORT,
MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
MPI_UNSIGNED_LONG
Fortran integer: MPI_INTEGER
Floating\-point: MPI_FLOAT, MPI_DOUBLE, MPI_REAL,
MPI_DOUBLE_PRECISION, MPI_LONG_DOUBLE
Logical: MPI_LOGICAL
Complex: MPI_COMPLEX
Byte: MPI_BYTE
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Now, the valid datatypes for each option is specified below.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
Op Allowed Types
\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
MPI_MAX, MPI_MIN C integer, Fortran integer,
floating\-point
MPI_SUM, MPI_PROD C integer, Fortran integer,
floating\-point, complex
MPI_LAND, MPI_LOR, C integer, logical
MPI_LXOR
MPI_BAND, MPI_BOR, C integer, Fortran integer, byte
MPI_BXOR
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBExample 1:\fP A routine that computes the dot product of two vectors
that are distributed across a group of processes and returns the answer
at process zero.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
SUBROUTINE PAR_BLAS1(m, a, b, c, comm)
REAL a(m), b(m) ! local slice of array
REAL c ! result (at process zero)
REAL sum
INTEGER m, comm, i, ierr
! local sum
sum = 0.0
DO i = 1, m
sum = sum + a(i)*b(i)
END DO
! global sum
CALL MPI_REDUCE(sum, c, 1, MPI_REAL, MPI_SUM, 0, comm, ierr)
RETURN
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBExample 2:\fP A routine that computes the product of a vector and an
array that are distributed across a group of processes and returns the
answer at process zero.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)
REAL a(m), b(m,n) ! local slice of array
REAL c(n) ! result
REAL sum(n)
INTEGER n, comm, i, j, ierr
! local sum
DO j= 1, n
sum(j) = 0.0
DO i = 1, m
sum(j) = sum(j) + a(i)*b(i,j)
END DO
END DO
! global sum
CALL MPI_REDUCE(sum, c, n, MPI_REAL, MPI_SUM, 0, comm, ierr)
! return result at process zero (and garbage at the other nodes)
RETURN
.ft P
.fi
.UNINDENT
.UNINDENT
.SH MINLOC AND MAXLOC
.sp
The operator MPI_MINLOC is used to compute a global minimum and also an
index attached to the minimum value. MPI_MAXLOC similarly computes a
global maximum and index. One application of these is to compute a
global minimum (maximum) and the rank of the process containing this
value.
.sp
The operation that defines MPI_MAXLOC is
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
( u ) ( v ) ( w )
( ) o ( ) = ( )
( i ) ( j ) ( k )
where
w = max(u, v)
and
( i if u > v
(
k = ( min(i, j) if u = v
(
( j if u < v)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
MPI_MINLOC is defined similarly:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
( u ) ( v ) ( w )
( ) o ( ) = ( )
( i ) ( j ) ( k )
where
w = min(u, v)
and
( i if u < v
(
k = ( min(i, j) if u = v
(
( j if u > v)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Both operations are associative and commutative. Note that if MPI_MAXLOC
is applied to reduce a sequence of pairs (u(0), 0), (u(1), 1), …,
(u(n\-1), n\-1), then the value returned is (u , r), where u= max(i) u(i)
and r is the index of the first global maximum in the sequence. Thus, if
each process supplies a value and its rank within the group, then a
reduce operation with op = MPI_MAXLOC will return the maximum value and
the rank of the first process with that value. Similarly, MPI_MINLOC can
be used to return a minimum and its index. More generally, MPI_MINLOC
computes a lexicographic minimum, where elements are ordered according
to the first component of each pair, and ties are resolved according to
the second component.
.sp
The reduce operation is defined to operate on arguments that consist of
a pair: value and index. For both Fortran and C, types are provided to
describe the pair. The potentially mixed\-type nature of such arguments
is a problem in Fortran. The problem is circumvented, for Fortran, by
having the MPI\-provided type consist of a pair of the same type as
value, and coercing the index to this type also. In C, the MPI\-provided
pair type has distinct types and the index is an int.
.sp
In order to use MPI_MINLOC and MPI_MAXLOC in a reduce operation, one
must provide a datatype argument that represents a pair (value and
index). MPI provides nine such predefined datatypes. The operations
MPI_MAXLOC and MPI_MINLOC can be used with each of the following
datatypes:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
Fortran:
Name Description
MPI_2REAL pair of REALs
MPI_2DOUBLE_PRECISION pair of DOUBLE\-PRECISION variables
MPI_2INTEGER pair of INTEGERs
C:
Name Description
MPI_FLOAT_INT float and int
MPI_DOUBLE_INT double and int
MPI_LONG_INT long and int
MPI_2INT pair of ints
MPI_SHORT_INT short and int
MPI_LONG_DOUBLE_INT long double and int
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The data type MPI_2REAL is equivalent to:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
MPI_TYPE_CONTIGUOUS(2, MPI_REAL, MPI_2REAL)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Similar statements apply for MPI_2INTEGER, MPI_2DOUBLE_PRECISION, and
MPI_2INT.
.sp
The datatype MPI_FLOAT_INT is as if defined by the following sequence of
instructions.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
type[0] = MPI_FLOAT
type[1] = MPI_INT
disp[0] = 0
disp[1] = sizeof(float)
block[0] = 1
block[1] = 1
MPI_TYPE_STRUCT(2, block, disp, type, MPI_FLOAT_INT)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Similar statements apply for MPI_LONG_INT and MPI_DOUBLE_INT.
.sp
\fBExample 3:\fP Each process has an array of 30 doubles, in C. For each
of the 30 locations, compute the value and rank of the process
containing the largest value.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
\&...
/* each process has an array of 30 double: ain[30]
*/
double ain[30], aout[30];
int ind[30];
struct {
double val;
int rank;
} in[30], out[30];
int i, myrank, root;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
for (i=0; i<30; ++i) {
in[i].val = ain[i];
in[i].rank = myrank;
}
MPI_Reduce( in, out, 30, MPI_DOUBLE_INT, MPI_MAXLOC, root, comm );
/* At this point, the answer resides on process root
*/
if (myrank == root) {
/* read ranks out
*/
for (i=0; i<30; ++i) {
aout[i] = out[i].val;
ind[i] = out[i].rank;
}
}
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBExample 4:\fP Same example, in Fortran.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
\&...
! each process has an array of 30 double: ain(30)
DOUBLE PRECISION :: ain(30), aout(30)
INTEGER :: ind(30)
DOUBLE PRECISION :: in(2,30), out(2,30)
INTEGER :: i, myrank, root, ierr
call MPI_COMM_RANK(MPI_COMM_WORLD, myrank)
DO I=1, 30
in(1,i) = ain(i)
in(2,i) = myrank ! myrank is coerced to a double
END DO
call MPI_REDUCE( in, out, 30, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, root, &
comm, ierr )
! At this point, the answer resides on process root
IF (myrank == root) THEN
! read ranks out
DO I= 1, 30
aout(i) = out(1,i)
ind(i) = out(2,i) ! rank is coerced back to an integer
END DO
END IF
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBExample 5:\fP Each process has a nonempty array of values. Find the
minimum global value, the rank of the process that holds it, and its
index on this process.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#define LEN 1000
float val[LEN]; /* local array of values */
int count; /* local number of values */
int myrank, minrank, minindex;
float minval;
struct {
float value;
int index;
} in, out;
/* local minloc */
in.value = val[0];
in.index = 0;
for (i=1; i < count; i++)
if (in.value > val[i]) {
in.value = val[i];
in.index = i;
}
/* global minloc */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
in.index = myrank*LEN + in.index;
MPI_Reduce( in, out, 1, MPI_FLOAT_INT, MPI_MINLOC, root, comm );
/* At this point, the answer resides on process root
*/
if (myrank == root) {
/* read answer out
*/
minval = out.value;
minrank = out.index / LEN;
minindex = out.index % LEN;
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
All MPI objects (e.g., MPI_Datatype, MPI_Comm) are of type INTEGER in
Fortran.
.SH NOTES ON COLLECTIVE OPERATIONS
.sp
The reduction functions ( MPI_Op ) do not return an error value. As a
result, if the functions detect an error, all they can do is either call
\fI\%MPI_Abort\fP or silently skip the problem. Thus, if you change the error
handler from MPI_ERRORS_ARE_FATAL to something else, for example,
MPI_ERRORS_RETURN , then no error may be indicated.
.sp
The reason for this is the performance problems in ensuring that all
collective routines return the same error value.
.SH ERRORS
.sp
Almost all MPI routines return an error value; C routines as the return result
of the function and Fortran routines in the last argument.
.sp
Before the error value is returned, the current MPI error handler associated
with the communication object (e.g., communicator, window, file) is called.
If no communication object is associated with the MPI call, then the call is
considered attached to MPI_COMM_SELF and will call the associated MPI error
handler. When MPI_COMM_SELF is not initialized (i.e., before
\fI\%MPI_Init\fP/\fI\%MPI_Init_thread\fP, after \fI\%MPI_Finalize\fP, or when using the Sessions
Model exclusively) the error raises the initial error handler. The initial
error handler can be changed by calling \fI\%MPI_Comm_set_errhandler\fP on
MPI_COMM_SELF when using the World model, or the mpi_initial_errhandler CLI
argument to mpiexec or info key to \fI\%MPI_Comm_spawn\fP/\fI\%MPI_Comm_spawn_multiple\fP\&.
If no other appropriate error handler has been set, then the MPI_ERRORS_RETURN
error handler is called for MPI I/O functions and the MPI_ERRORS_ABORT error
handler is called for all other MPI functions.
.sp
Open MPI includes three predefined error handlers that can be used:
.INDENT 0.0
.IP \(bu 2
\fBMPI_ERRORS_ARE_FATAL\fP
Causes the program to abort all connected MPI processes.
.IP \(bu 2
\fBMPI_ERRORS_ABORT\fP
An error handler that can be invoked on a communicator,
window, file, or session. When called on a communicator, it
acts as if \fI\%MPI_Abort\fP was called on that communicator. If
called on a window or file, acts as if \fI\%MPI_Abort\fP was called
on a communicator containing the group of processes in the
corresponding window or file. If called on a session,
aborts only the local process.
.IP \(bu 2
\fBMPI_ERRORS_RETURN\fP
Returns an error code to the application.
.UNINDENT
.sp
MPI applications can also implement their own error handlers by calling:
.INDENT 0.0
.IP \(bu 2
\fI\%MPI_Comm_create_errhandler\fP then \fI\%MPI_Comm_set_errhandler\fP
.IP \(bu 2
\fI\%MPI_File_create_errhandler\fP then \fI\%MPI_File_set_errhandler\fP
.IP \(bu 2
\fI\%MPI_Session_create_errhandler\fP then \fI\%MPI_Session_set_errhandler\fP or at \fI\%MPI_Session_init\fP
.IP \(bu 2
\fI\%MPI_Win_create_errhandler\fP then \fI\%MPI_Win_set_errhandler\fP
.UNINDENT
.sp
Note that MPI does not guarantee that an MPI program can continue past
an error.
.sp
See the \fI\%MPI man page\fP for a full list of \fI\%MPI error codes\fP\&.
.sp
See the Error Handling section of the MPI\-3.1 standard for
more information.
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.IP \(bu 2
\fI\%MPI_Allreduce\fP
.IP \(bu 2
\fI\%MPI_Reduce_scatter\fP
.IP \(bu 2
\fI\%MPI_Scan\fP
.IP \(bu 2
\fI\%MPI_Op_create\fP
.IP \(bu 2
\fI\%MPI_Op_free\fP
.UNINDENT
.UNINDENT
.UNINDENT
.SH COPYRIGHT
2003-2025, The Open MPI Community
.\" Generated by docutils manpage writer.
.
|