1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
.\" Man page generated from reStructuredText.
.
.TH "MPI_NEIGHBOR_ALLTOALLV_INIT" "3" "May 30, 2025" "" "Open MPI"
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.INDENT 0.0
.INDENT 3.5
.UNINDENT
.UNINDENT
.sp
\fI\%MPI_Neighbor_alltoallv\fP, \fI\%MPI_Ineighbor_alltoallv\fP,
\fI\%MPI_Neighbor_alltoallv_init\fP — All processes send different amounts of
data to, and receive different amounts of data from, all neighbors
.SH SYNTAX
.SS C Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <mpi.h>
int MPI_Neighbor_alltoallv(const void *sendbuf, const int sendcounts[],
const int sdispls[], MPI_Datatype sendtype,
void *recvbuf, const int recvcounts[],
const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm)
int MPI_Ineighbor_alltoallv(const void *sendbuf, const int sendcounts[],
const int sdispls[], MPI_Datatype sendtype,
void *recvbuf, const int recvcounts[],
const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm,
MPI_Request *request)
int MPI_Neighbor_alltoallv_init(const void *sendbuf, const int sendcounts[],
const int sdispls[], MPI_Datatype sendtype,
void *recvbuf, const int recvcounts[],
const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm,
MPI_Info info, MPI_Request *request)
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Fortran Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
USE MPI
! or the older form: INCLUDE \(aqmpif.h\(aq
MPI_NEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE,
RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE
INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPE
INTEGER COMM, IERROR
MPI_INEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE,
RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE
INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPE
INTEGER COMM, REQUEST, IERROR
MPI_NEIGHBOR_ALLTOALLV_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE,
RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE
INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPE
INTEGER COMM, INFO, REQUEST, IERROR
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Fortran 2008 Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
USE mpi_f08
MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*),
rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Ineighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
recvcounts(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Neighbor_alltoallv_init(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm, info, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
recvcounts(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
.ft P
.fi
.UNINDENT
.UNINDENT
.SH INPUT PARAMETERS
.INDENT 0.0
.IP \(bu 2
\fBsendbuf\fP: Starting address of send buffer.
.IP \(bu 2
\fBsendcounts\fP: Integer array, where entry i specifies the number of elements to send to neighbor i.
.IP \(bu 2
\fBsdispls\fP: Integer array, where entry i specifies the displacement (offset from \fIsendbuf\fP, in units of \fIsendtype\fP) from which to send data to neighbor i.
.IP \(bu 2
\fBsendtype\fP: Datatype of send buffer elements.
.IP \(bu 2
\fBrecvcounts\fP: Integer array, where entry j specifies the number of elements to receive from neighbor j.
.IP \(bu 2
\fBrdispls\fP: Integer array, where entry j specifies the displacement (offset from \fIrecvbuf\fP, in units of \fIrecvtype\fP) to which data from neighbor j should be written.
.IP \(bu 2
\fBrecvtype\fP: Datatype of receive buffer elements.
.IP \(bu 2
\fBcomm\fP: Communicator over which data is to be exchanged.
.IP \(bu 2
\fBinfo\fP: Info (handle, persistent only).
.UNINDENT
.SH OUTPUT PARAMETERS
.INDENT 0.0
.IP \(bu 2
\fBrecvbuf\fP: Address of receive buffer.
.IP \(bu 2
\fBrequest\fP: Request (handle, non\-blocking only).
.IP \(bu 2
\fBierror\fP: Fortran only: Error status.
.UNINDENT
.SH DESCRIPTION
.sp
\fI\%MPI_Neighbor_alltoallv\fP is a generalized collective operation in which
all processes send data to and receive data from all neighbors. It adds
flexibility to \fI\%MPI_Neighbor_alltoall\fP by allowing the user to specify
data to send and receive vector\-style (via a displacement and element
count). The operation of this routine can be thought of as follows,
where each process performs 2n (n being the number of neighbors in to
topology of communicator \fIcomm\fP) independent point\-to\-point
communications. The neighbors and buffer layout are determined by the
topology of \fIcomm\fP\&.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
MPI_Cart_get(comm, maxdims, dims, periods, coords);
for (dim = 0, i = 0 ; dim < dims ; ++dim) {
MPI_Cart_shift(comm, dim, 1, &r0, &r1);
MPI_Isend(sendbuf + sdispls[i] * extent(sendtype),
sendcount, sendtype, r0, ..., comm, ...);
MPI_Irecv(recvbuf + rdispls[i] * extent(recvtype),
recvcount, recvtype, r0, ..., comm, ...);
++i;
MPI_Isend(sendbuf + sdispls[i] * extent(sendtype),
sendcount, sendtype, r1, ..., comm, &req[i]);
MPI_Irecv(recvbuf + rdispls[i] * extent(recvtype),
recvcount, recvtype, r1, ..., comm, ...);
++i;
}
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Process j sends the k\-th block of its local \fIsendbuf\fP to neighbor k,
which places the data in the j\-th block of its local \fIrecvbuf\fP\&.
.sp
When a pair of processes exchanges data, each may pass different element
count and datatype arguments so long as the sender specifies the same
amount of data to send (in bytes) as the receiver expects to receive.
.sp
Note that process i may send a different amount of data to process j
than it receives from process j. Also, a process may send entirely
different amounts of data to different processes in the communicator.
.SH NEIGHBOR ORDERING
.sp
For a distributed graph topology, created with \fI\%MPI_Dist_graph_create\fP,
the sequence of neighbors in the send and receive buffers at each
process is defined as the sequence returned by \fI\%MPI_Dist_graph_neighbors\fP
for destinations and sources, respectively. For a general graph
topology, created with \fI\%MPI_Graph_create\fP, the order of neighbors in the
send and receive buffers is defined as the sequence of neighbors as
returned by \fI\%MPI_Graph_neighbors\fP\&. Note that general graph topologies
should generally be replaced by the distributed graph topologies.
.sp
For a Cartesian topology, created with \fI\%MPI_Cart_create\fP, the sequence of
neighbors in the send and receive buffers at each process is defined by
order of the dimensions, first the neighbor in the negative direction
and then in the positive direction with displacement 1. The numbers of
sources and destinations in the communication routines are 2*ndims with
ndims defined in \fI\%MPI_Cart_create\fP\&. If a neighbor does not exist, i.e., at
the border of a Cartesian topology in the case of a non\-periodic virtual
grid dimension (i.e., periods[…]==false), then this neighbor is
defined to be \fBMPI_PROC_NULL\fP\&.
.sp
If a neighbor in any of the functions is \fBMPI_PROC_NULL\fP, then the
neighborhood collective communication behaves like a point\-to\-point
communication with \fBMPI_PROC_NULL\fP in this direction. That is, the buffer
is still part of the sequence of neighbors but it is neither
communicated nor updated.
.SH NOTES
.sp
The MPI_IN_PLACE option for \fIsendbuf\fP is not meaningful for this
operation.
.sp
The specification of counts and displacements should not cause any
location to be written more than once.
.sp
All arguments on all processes are significant. The \fIcomm\fP argument, in
particular, must describe the same communicator on all processes.
.sp
The offsets of \fIsdispls\fP and \fIrdispls\fP are measured in units of
\fIsendtype\fP and \fIrecvtype\fP, respectively. Compare this to
\fI\%MPI_Neighbor_alltoallw\fP, where these offsets are measured in bytes.
.SH ERRORS
.sp
Almost all MPI routines return an error value; C routines as the return result
of the function and Fortran routines in the last argument.
.sp
Before the error value is returned, the current MPI error handler associated
with the communication object (e.g., communicator, window, file) is called.
If no communication object is associated with the MPI call, then the call is
considered attached to MPI_COMM_SELF and will call the associated MPI error
handler. When MPI_COMM_SELF is not initialized (i.e., before
\fI\%MPI_Init\fP/\fI\%MPI_Init_thread\fP, after \fI\%MPI_Finalize\fP, or when using the Sessions
Model exclusively) the error raises the initial error handler. The initial
error handler can be changed by calling \fI\%MPI_Comm_set_errhandler\fP on
MPI_COMM_SELF when using the World model, or the mpi_initial_errhandler CLI
argument to mpiexec or info key to \fI\%MPI_Comm_spawn\fP/\fI\%MPI_Comm_spawn_multiple\fP\&.
If no other appropriate error handler has been set, then the MPI_ERRORS_RETURN
error handler is called for MPI I/O functions and the MPI_ERRORS_ABORT error
handler is called for all other MPI functions.
.sp
Open MPI includes three predefined error handlers that can be used:
.INDENT 0.0
.IP \(bu 2
\fBMPI_ERRORS_ARE_FATAL\fP
Causes the program to abort all connected MPI processes.
.IP \(bu 2
\fBMPI_ERRORS_ABORT\fP
An error handler that can be invoked on a communicator,
window, file, or session. When called on a communicator, it
acts as if \fI\%MPI_Abort\fP was called on that communicator. If
called on a window or file, acts as if \fI\%MPI_Abort\fP was called
on a communicator containing the group of processes in the
corresponding window or file. If called on a session,
aborts only the local process.
.IP \(bu 2
\fBMPI_ERRORS_RETURN\fP
Returns an error code to the application.
.UNINDENT
.sp
MPI applications can also implement their own error handlers by calling:
.INDENT 0.0
.IP \(bu 2
\fI\%MPI_Comm_create_errhandler\fP then \fI\%MPI_Comm_set_errhandler\fP
.IP \(bu 2
\fI\%MPI_File_create_errhandler\fP then \fI\%MPI_File_set_errhandler\fP
.IP \(bu 2
\fI\%MPI_Session_create_errhandler\fP then \fI\%MPI_Session_set_errhandler\fP or at \fI\%MPI_Session_init\fP
.IP \(bu 2
\fI\%MPI_Win_create_errhandler\fP then \fI\%MPI_Win_set_errhandler\fP
.UNINDENT
.sp
Note that MPI does not guarantee that an MPI program can continue past
an error.
.sp
See the \fI\%MPI man page\fP for a full list of \fI\%MPI error codes\fP\&.
.sp
See the Error Handling section of the MPI\-3.1 standard for
more information.
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.IP \(bu 2
\fI\%MPI_Neighbor_alltoall\fP
.IP \(bu 2
\fI\%MPI_Neighbor_alltoallw\fP
.IP \(bu 2
\fI\%MPI_Cart_create\fP
.IP \(bu 2
\fI\%MPI_Graph_create\fP
.IP \(bu 2
\fI\%MPI_Dist_graph_create\fP
.UNINDENT
.UNINDENT
.UNINDENT
.SH COPYRIGHT
2003-2025, The Open MPI Community
.\" Generated by docutils manpage writer.
.
|