File: MPI_Op_create.3

package info (click to toggle)
openmpi 5.0.8-4
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 201,684 kB
  • sloc: ansic: 613,078; makefile: 42,353; sh: 11,194; javascript: 9,244; f90: 7,052; java: 6,404; perl: 5,179; python: 1,859; lex: 740; fortran: 61; cpp: 20; tcl: 12
file content (332 lines) | stat: -rw-r--r-- 10,664 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
.\" Man page generated from reStructuredText.
.
.TH "MPI_OP_CREATE" "3" "May 30, 2025" "" "Open MPI"
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.sp
\fI\%MPI_Op_create\fP — Creates a user\-defined combination function handle.
.SH SYNTAX
.SS C Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <mpi.h>

int MPI_Op_create(MPI_User_function *function, int commute,
     MPI_Op *op)
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Fortran Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
USE MPI
! or the older form: INCLUDE \(aqmpif.h\(aq
MPI_OP_CREATE(FUNCTION, COMMUTE, OP, IERROR)
     EXTERNAL        FUNCTION
     LOGICAL COMMUTE
     INTEGER OP, IERROR
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Fortran 2008 Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
USE mpi_f08
MPI_Op_create(user_fn, commute, op, ierror)
     PROCEDURE(MPI_User_function) :: user_fn
     LOGICAL, INTENT(IN) :: commute
     TYPE(MPI_Op), INTENT(OUT) :: op
     INTEGER, OPTIONAL, INTENT(OUT) :: ierror
.ft P
.fi
.UNINDENT
.UNINDENT
.SH INPUT PARAMETERS
.INDENT 0.0
.IP \(bu 2
\fBfunction\fP: User\-defined function (function).
.IP \(bu 2
\fBcommute\fP: True if commutative; false otherwise.
.UNINDENT
.SH OUTPUT PARAMETERS
.INDENT 0.0
.IP \(bu 2
\fBop\fP: Operation (handle).
.IP \(bu 2
\fBierror\fP: Fortran only: Error status (integer).
.UNINDENT
.SH DESCRIPTION
.sp
\fI\%MPI_Op_create\fP binds a user\-defined global operation to an op handle that
can subsequently be used in \fI\%MPI_Reduce\fP, \fI\%MPI_Allreduce\fP,
\fI\%MPI_Reduce_scatter\fP, and \fI\%MPI_Scan\fP\&. The user\-defined operation is assumed
to be associative. If commute = true, then the operation should be both
commutative and associative. If commute = false, then the order of
operands is fixed and is defined to be in ascending, process rank order,
beginning with process zero. The order of evaluation can be changed,
taking advantage of the associativity of the operation. If commute =
true then the order of evaluation can be changed, taking advantage of
commutativity and associativity.
.sp
\fIfunction\fP is the user\-defined function, which must have the following
four arguments: invec, inoutvec, len, and datatype.
.sp
The ANSI\-C prototype for the function is the following:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
typedef void MPI_User_function(void *invec, void *inoutvec,
                               int *len,
                               MPI_Datatype *datatype);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The Fortran declaration of the user\-defined function appears below.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
FUNCTION USER_FUNCTION( INVEC(*), INOUTVEC(*), LEN, TYPE)
<type> INVEC(LEN), INOUTVEC(LEN)
 INTEGER LEN, TYPE
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The datatype argument is a handle to the data type that was passed into
the call to \fI\%MPI_Reduce\fP\&. The user reduce function should be written such
that the following holds: Let u[0], …, u[len\-1] be the len elements in
the communication buffer described by the arguments invec, len, and
datatype when the function is invoked; let v[0], …, v[len\-1] be len
elements in the communication buffer described by the arguments
inoutvec, len, and datatype when the function is invoked; let w[0], …,
w[len\-1] be len elements in the communication buffer described by the
arguments inoutvec, len, and datatype when the function returns; then
w[i] = u[i] o v[i], for i=0 ,…, len\-1, where o is the reduce operation
that the function computes.
.sp
Informally, we can think of invec and inoutvec as arrays of len elements
that function is combining. The result of the reduction over\-writes
values in inoutvec, hence the name. Each invocation of the function
results in the pointwise evaluation of the reduce operator on len
elements: i.e, the function returns in inoutvec[i] the value invec[i] o
inoutvec[i], for i = 0…, count\-1, where o is the combining operation
computed by the function.
.sp
By internally comparing the value of the datatype argument to known,
global handles, it is possible to overload the use of a single
user\-defined function for several different data types.
.sp
General datatypes may be passed to the user function. However, use of
datatypes that are not contiguous is likely to lead to inefficiencies.
.sp
No MPI communication function may be called inside the user function.
\fI\%MPI_Abort\fP may be called inside the function in case of an error.
.SH NOTES
.sp
Suppose one defines a library of user\-defined reduce functions that are
overloaded: The datatype argument is used to select the right execution
path at each invocation, according to the types of the operands. The
user\-defined reduce function cannot “decode” the datatype argument that
it is passed, and cannot identify, by itself, the correspondence between
the datatype handles and the datatype they represent. This
correspondence was established when the datatypes were created. Before
the library is used, a library initialization preamble must be executed.
This preamble code will define the datatypes that are used by the
library and store handles to these datatypes in global, static variables
that are shared by the user code and the library code.
.sp
\fBExample:\fP Example of user\-defined reduce:
.sp
Compute the product of an array of complex numbers, in C.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
typedef struct {
    double real,imag;
} Complex;

/* the user\-defined function
 */
void myProd( Complex *in, Complex *inout, int *len,
             MPI_Datatype *dptr )
{
    int i;
    Complex c;

for (i=0; i< *len; ++i) {
        c.real = inout\->real*in\->real \-
                   inout\->imag*in\->imag;
        c.imag = inout\->real*in\->imag +
                   inout\->imag*in\->real;
        *inout = c;
        in++; inout++;
    }
}

/* and, to call it...
 */
\&...

/* each process has an array of 100 Complexes
     */
    Complex a[100], answer[100];
    MPI_Op myOp;
    MPI_Datatype ctype;

/* explain to MPI how type Complex is defined
     */
   MPI_Type_contiguous( 2, MPI_DOUBLE, &ctype );
    MPI_Type_commit( &ctype );
    /* create the complex\-product user\-op
     */
    MPI_Op_create( myProd, True, &myOp );

    MPI_Reduce( a, answer, 100, ctype, myOp, root, comm );

    /* At this point, the answer, which consists of 100 Complexes,
     * resides on process root
     */
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The Fortran version of \fI\%MPI_Reduce\fP will invoke a user\-defined reduce
function using the Fortran calling conventions and will pass a
Fortran\-type datatype argument; the C version will use C calling
convention and the C representation of a datatype handle. Users who plan
to mix languages should define their reduction functions accordingly.
.SH NOTES ON COLLECTIVE OPERATIONS
.sp
The reduction functions ( MPI_Op ) do not return an error value. As a
result, if the functions detect an error, all they can do is either call
\fI\%MPI_Abort\fP or silently skip the problem. Thus, if you change the error
handler from MPI_ERRORS_ARE_FATAL to something else, for example,
MPI_ERRORS_RETURN , then no error may be indicated.
.sp
The reason for this is the performance problems in ensuring that all
collective routines return the same error value.
.SH ERRORS
.sp
Almost all MPI routines return an error value; C routines as the return result
of the function and Fortran routines in the last argument.
.sp
Before the error value is returned, the current MPI error handler associated
with the communication object (e.g., communicator, window, file) is called.
If no communication object is associated with the MPI call, then the call is
considered attached to MPI_COMM_SELF and will call the associated MPI error
handler. When MPI_COMM_SELF is not initialized (i.e., before
\fI\%MPI_Init\fP/\fI\%MPI_Init_thread\fP, after \fI\%MPI_Finalize\fP, or when using the Sessions
Model exclusively) the error raises the initial error handler. The initial
error handler can be changed by calling \fI\%MPI_Comm_set_errhandler\fP on
MPI_COMM_SELF when using the World model, or the mpi_initial_errhandler CLI
argument to mpiexec or info key to \fI\%MPI_Comm_spawn\fP/\fI\%MPI_Comm_spawn_multiple\fP\&.
If no other appropriate error handler has been set, then the MPI_ERRORS_RETURN
error handler is called for MPI I/O functions and the MPI_ERRORS_ABORT error
handler is called for all other MPI functions.
.sp
Open MPI includes three predefined error handlers that can be used:
.INDENT 0.0
.IP \(bu 2
\fBMPI_ERRORS_ARE_FATAL\fP
Causes the program to abort all connected MPI processes.
.IP \(bu 2
\fBMPI_ERRORS_ABORT\fP
An error handler that can be invoked on a communicator,
window, file, or session. When called on a communicator, it
acts as if \fI\%MPI_Abort\fP was called on that communicator. If
called on a window or file, acts as if \fI\%MPI_Abort\fP was called
on a communicator containing the group of processes in the
corresponding window or file. If called on a session,
aborts only the local process.
.IP \(bu 2
\fBMPI_ERRORS_RETURN\fP
Returns an error code to the application.
.UNINDENT
.sp
MPI applications can also implement their own error handlers by calling:
.INDENT 0.0
.IP \(bu 2
\fI\%MPI_Comm_create_errhandler\fP then \fI\%MPI_Comm_set_errhandler\fP
.IP \(bu 2
\fI\%MPI_File_create_errhandler\fP then \fI\%MPI_File_set_errhandler\fP
.IP \(bu 2
\fI\%MPI_Session_create_errhandler\fP then \fI\%MPI_Session_set_errhandler\fP or at \fI\%MPI_Session_init\fP
.IP \(bu 2
\fI\%MPI_Win_create_errhandler\fP then \fI\%MPI_Win_set_errhandler\fP
.UNINDENT
.sp
Note that MPI does not guarantee that an MPI program can continue past
an error.
.sp
See the \fI\%MPI man page\fP for a full list of \fI\%MPI error codes\fP\&.
.sp
See the Error Handling section of the MPI\-3.1 standard for
more information.
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.IP \(bu 2
\fI\%MPI_Reduce\fP
.IP \(bu 2
\fI\%MPI_Reduce_scatter\fP
.IP \(bu 2
\fI\%MPI_Allreduce\fP
.IP \(bu 2
\fI\%MPI_Scan\fP
.IP \(bu 2
\fI\%MPI_Op_free\fP
.UNINDENT
.UNINDENT
.UNINDENT
.SH COPYRIGHT
2003-2025, The Open MPI Community
.\" Generated by docutils manpage writer.
.