1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
.\" Man page generated from reStructuredText.
.
.TH "MPI_UNPACK_EXTERNAL" "3" "May 30, 2025" "" "Open MPI"
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.sp
\fI\%MPI_Unpack_external\fP — Reads data from a portable format
.SH SYNTAX
.SS C Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <mpi.h>
int MPI_Unpack_external(const char datarep[], const void *inbuf,
MPI_Aint insize, MPI_Aint *position,
void *outbuf, int outcount,
MPI_Datatype datatype)
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Fortran Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
USE MPI
! or the older form: INCLUDE \(aqmpif.h\(aq
MPI_UNPACK_EXTERNAL(DATAREP, INBUF, INSIZE, POSITION,
OUTBUF, OUTCOUNT, DATATYPE, IERROR)
INTEGER OUTCOUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE, POSITION
CHARACTER*(*) DATAREP
<type> INBUF(*), OUTBUF(*)
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Fortran 2008 Syntax
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
USE mpi_f08
MPI_Unpack_external(datarep, inbuf, insize, position, outbuf, outcount,
datatype, ierror)
CHARACTER(LEN=*), INTENT(IN) :: datarep
TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
TYPE(*), DIMENSION(..) :: outbuf
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: insize
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position
INTEGER, INTENT(IN) :: outcount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
.ft P
.fi
.UNINDENT
.UNINDENT
.SH INPUT PARAMETERS
.INDENT 0.0
.IP \(bu 2
\fBdatarep\fP: Data Representation (string).
.IP \(bu 2
\fBinbuf\fP: Input buffer start (choice).
.IP \(bu 2
\fBinsize\fP: Size of input buffer, in bytes (integer).
.IP \(bu 2
\fBoutcount\fP: Number of items to be unpacked (integer).
.IP \(bu 2
\fBdatatype\fP: Datatype of each output data item (handle).
.UNINDENT
.SH INPUT/OUTPUT PARAMETER
.INDENT 0.0
.IP \(bu 2
\fBposition\fP: Current position in buffer, in bytes (integer).
.UNINDENT
.SH OUTPUT PARAMETERS
.INDENT 0.0
.IP \(bu 2
\fBoutbuf\fP: Output buffer start (choice).
.IP \(bu 2
\fBierror\fP: Fortran only: Error status (integer).
.UNINDENT
.SH DESCRIPTION
.sp
\fI\%MPI_Unpack_external\fP unpacks data from the external32 format, a universal
data representation defined by the MPI Forum. This format is useful for
exchanging data between MPI implementations, or when writing data to a
file.
.sp
The input buffer is a contiguous storage area pointed to by \fIinbuf\fP
containing \fIinsize\fP bytes. The output buffer can be any communication
buffer allowed in \fI\%MPI_Recv\fP, and is specified by \fIoutbuf\fP, \fIoutcount\fP,
and \fIdatatype\fP\&.
.sp
The input value of \fIposition\fP is the first position in \fIinbuf\fP to be
read for unpacking (measured in bytes, not elements, relative to the
start of the buffer). When the function returns, \fIposition\fP is
incremented by the size of the packed message, so that it points to the
first location in \fIinbuf\fP following the message that was unpacked. This
way it may be used as input to a subsequent call to \fI\%MPI_Unpack_external\fP\&.
.SH NOTES
.sp
Note the difference between \fI\%MPI_Recv\fP and \fI\%MPI_Unpack_external\fP: In
\fI\%MPI_Recv\fP, the \fIcount\fP argument specifies the maximum number of items
that can be received. In \fI\%MPI_Unpack_external\fP, the \fIoutcount\fP argument
specifies the actual number of items that are to be unpacked. With a
regular receive operation, the incoming message size determines the
number of components that will be received. With \fI\%MPI_Unpack_external\fP, it
is up to the user to specify how many components to unpack, since the
user may wish to unpack the received message multiple times into various
buffers.
.sp
To understand the behavior of pack and unpack, it is convenient to think
of the data part of a message as being the sequence obtained by
concatenating the successive values sent in that message. The pack
operation stores this sequence in the buffer space, as if sending the
message to that buffer. The unpack operation retrieves this sequence
from buffer space, as if receiving a message from that buffer. (It is
helpful to think of internal Fortran files or sscanf in C for a similar
function.)
.sp
Several messages can be successively packed into one packing unit. This
is effected by several successive related calls to \fI\%MPI_Pack_external\fP,
where the first call provides \fIposition\fP=0, and each successive call
inputs the value of \fIposition\fP that was output by the previous call,
along with the same values for \fIoutbuf\fP and \fIoutcount\fP\&. This packing
unit now contains the equivalent information that would have been stored
in a message by one send call with a send buffer that is the
“concatenation” of the individual send buffers.
.sp
A packing unit can be sent using type MPI_BYTE. Any point\-to\-point or
collective communication function can be used to move the sequence of
bytes that forms the packing unit from one process to another. This
packing unit can now be received using any receive operation, with any
datatype: The type\-matching rules are relaxed for messages sent with
type MPI_BYTE.
.sp
A packing unit can be unpacked into several successive messages. This is
effected by several successive related calls to \fI\%MPI_Unpack_external\fP,
where the first call provides \fIposition\fP=0, and each successive call
inputs the value of position that was output by the previous call, and
the same values for \fIinbuf\fP and \fIinsize\fP\&.
.sp
The concatenation of two packing units is not necessarily a packing
unit; nor is a substring of a packing unit necessarily a packing unit.
Thus, one cannot concatenate two packing units and then unpack the
result as one packing unit; nor can one unpack a substring of a packing
unit as a separate packing unit. Each packing unit that was created by a
related sequence of pack calls must be unpacked as a unit by a sequence
of related unpack calls.
.SH ERRORS
.sp
Almost all MPI routines return an error value; C routines as the return result
of the function and Fortran routines in the last argument.
.sp
Before the error value is returned, the current MPI error handler associated
with the communication object (e.g., communicator, window, file) is called.
If no communication object is associated with the MPI call, then the call is
considered attached to MPI_COMM_SELF and will call the associated MPI error
handler. When MPI_COMM_SELF is not initialized (i.e., before
\fI\%MPI_Init\fP/\fI\%MPI_Init_thread\fP, after \fI\%MPI_Finalize\fP, or when using the Sessions
Model exclusively) the error raises the initial error handler. The initial
error handler can be changed by calling \fI\%MPI_Comm_set_errhandler\fP on
MPI_COMM_SELF when using the World model, or the mpi_initial_errhandler CLI
argument to mpiexec or info key to \fI\%MPI_Comm_spawn\fP/\fI\%MPI_Comm_spawn_multiple\fP\&.
If no other appropriate error handler has been set, then the MPI_ERRORS_RETURN
error handler is called for MPI I/O functions and the MPI_ERRORS_ABORT error
handler is called for all other MPI functions.
.sp
Open MPI includes three predefined error handlers that can be used:
.INDENT 0.0
.IP \(bu 2
\fBMPI_ERRORS_ARE_FATAL\fP
Causes the program to abort all connected MPI processes.
.IP \(bu 2
\fBMPI_ERRORS_ABORT\fP
An error handler that can be invoked on a communicator,
window, file, or session. When called on a communicator, it
acts as if \fI\%MPI_Abort\fP was called on that communicator. If
called on a window or file, acts as if \fI\%MPI_Abort\fP was called
on a communicator containing the group of processes in the
corresponding window or file. If called on a session,
aborts only the local process.
.IP \(bu 2
\fBMPI_ERRORS_RETURN\fP
Returns an error code to the application.
.UNINDENT
.sp
MPI applications can also implement their own error handlers by calling:
.INDENT 0.0
.IP \(bu 2
\fI\%MPI_Comm_create_errhandler\fP then \fI\%MPI_Comm_set_errhandler\fP
.IP \(bu 2
\fI\%MPI_File_create_errhandler\fP then \fI\%MPI_File_set_errhandler\fP
.IP \(bu 2
\fI\%MPI_Session_create_errhandler\fP then \fI\%MPI_Session_set_errhandler\fP or at \fI\%MPI_Session_init\fP
.IP \(bu 2
\fI\%MPI_Win_create_errhandler\fP then \fI\%MPI_Win_set_errhandler\fP
.UNINDENT
.sp
Note that MPI does not guarantee that an MPI program can continue past
an error.
.sp
See the \fI\%MPI man page\fP for a full list of \fI\%MPI error codes\fP\&.
.sp
See the Error Handling section of the MPI\-3.1 standard for
more information.
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.IP \(bu 2
\fI\%MPI_Pack_external\fP
.IP \(bu 2
\fI\%MPI_Pack_external_size\fP
.IP \(bu 2
\fI\%MPI_Recv\fP
.IP \(bu 2
sscanf(3C)
.UNINDENT
.UNINDENT
.UNINDENT
.SH COPYRIGHT
2003-2025, The Open MPI Community
.\" Generated by docutils manpage writer.
.
|