1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
.\" Man page generated from reStructuredText.
.
.TH "SHMEM_COLLECT32" "3" "May 30, 2025" "" "Open MPI"
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.sp
shmem_collect4(3), shmem_collect8(3), \fI\%shmem_collect32\fP(3),
\fI\%shmem_collect64\fP(3), shmem_fcollect(3), shmem_fcollect4(3), shmem_fcollect8(3), \fI\%shmem_fcollect32\fP(3),
\fI\%shmem_fcollect64\fP(3) \- Concatenates blocks of data from
multiple processing elements (PEs) to an array in every PE
.SH SYNOPSIS
.sp
C or C++:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <mpp/shmem.h>
void shmem_collect32(void *target, const void *source,
size_t nelems, int PE_start, int logPE_stride, int PE_size,
long *pSync)
void shmem_collect64(void *target, const void *source,
size_t nelems, int PE_start, int logPE_stride, int PE_size,
long *pSync)
void shmem_fcollect32(void *target, const void *source,
size_t nelems, int PE_start, int logPE_stride, int PE_size,
long *pSync)
void shmem_fcollect64(void *target, const void *source,
size_t nelems, int PE_start, int logPE_stride, int PE_size,
long *pSync)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Fortran:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
INCLUDE "mpp/shmem.fh"
INTEGER nelems
INTEGER PE_start, logPE_stride, PE_size
INTEGER pSync(SHMEM_COLLECT_SYNC_SIZE)
CALL SHMEM_COLLECT4(target, source, nelems, PE_start,
& logPE_stride, PE_size, pSync)
CALL SHMEM_COLLECT8(target, source, nelems, PE_start,
& logPE_stride, PE_size, pSync)
CALL SHMEM_FCOLLECT4(target, source, nelems, PE_start,
& logPE_stride, PE_size, pSync)
CALL SHMEM_FCOLLECT8(target, source, nelems, PE_start,
& logPE_stride, PE_size, pSync)
.ft P
.fi
.UNINDENT
.UNINDENT
.SH DESCRIPTION
.sp
The shared memory (SHMEM) collect and fcollect routines concatenate
nelems 64\-bit or 32\-bit data items from the source array into the target
array, over the set of PEs defined by PE_start, log2PE_stride, and
PE_size, in processor number order. The resultant target array contains
the contribution from PE PE_start first, then the contribution from PE
PE_start + PE_stride second, and so on. The collected result is written
to the target array for all PEs in the active set.
.sp
The fcollect routines require that nelems be the same value in all
participating PEs, while the collect routines allow nelems to vary from
PE to PE.
.sp
The resulting target array is as follows:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
source(1..nelems)
from PE (PE_start + 0 * (2**logPE_stride))
\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
source(1..nelems)
from PE (PE_start + 1 * (2**logPE_stride))
\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
...
\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
source(1..nelems) from
PE (PE_start + (PE_size \- 1) * (2**logPE_stride))
\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
As with all SHMEM collective routines, each of these routines assumes
that only PEs in the active set call the routine. If a PE not in the
active set calls a SHMEM collective routine, undefined behavior results.
.sp
The arguments are as follows:
.INDENT 0.0
.TP
.B target
A symmetric array. The target argument must be large enough to accept
the concatenation of the source arrays on all PEs. The data types are
as follows:
.INDENT 7.0
.TP
.B [shmem_collect8, \fI\%shmem_collect64\fP, shmem_fcollect8, and
shmem_fcollect64] any data type with an element size of 64 bits.
Fortran derived types, Fortran character type, and C/C++
structures are not permitted.
.TP
.B [shmem_collect4, \fI\%shmem_collect32\fP, shmem_fcollect4, and
shmem_fcollect32] any data type with an element size of 32 bits.
Fortran derived types, Fortran character type, and C/C++
structures are not permitted.
.UNINDENT
.TP
.B source
A symmetric data object that can be of any type permissible for the
target argument.
.TP
.B nelems
The number of elements in the source array. nelems must be of type
integer. If you are using Fortran, it must be a default integer
value.
.TP
.B PE_start
The lowest virtual PE number of the active set of PEs. PE_start must
be of type integer. If you are using Fortran, it must be a default
integer value.
.TP
.B logPE_stride
The log (base 2) of the stride between consecutive virtual PE numbers
in the active set. logPE_stride must be of type integer. If you are
using Fortran, it must be a default integer value.
.TP
.B PE_size
The number of PEs in the active set. PE_size must be of type integer.
If you are using Fortran, it must be a default integer value.
.TP
.B pSync
A symmetric work array. In C/C++, pSync must be of type int and size
_SHMEM_COLLECT_SYNC_SIZE. In Fortran, pSync must be of type integer
and size SHMEM_COLLECT_SYNC_SIZE. If you are using Fortran, it must
be a default integer value. Every element of this array must be
initialized with the value _SHMEM_SYNC_VALUE in C/C++ or
SHMEM_SYNC_VALUE in Fortran before any of the PEs in the active set
enter shmem_barrier().
.UNINDENT
.sp
The values of arguments PE_start, logPE_stride, and PE_size must be
equal on all PEs in the active set. The same target and source arrays
and the same pSync work array must be passed to all PEs in the active
set.
.sp
Upon return from a collective routine, the following are true for the
local PE: The target array is updated. The values in the pSync array are
restored to the original values.
.SH NOTES
.sp
The terms collective and symmetric are defined in \fIintro_shmem\fP(3).
All SHMEM collective routines reset the values in pSync before they
return, so a particular pSync buffer need only be initialized the first
time it is used.
.sp
You must ensure that the pSync array is not being updated on any PE in
the active set while any of the PEs participate in processing of a SHMEM
collective routine. Be careful to avoid these situations: If the pSync
array is initialized at run time, some type of synchronization is needed
to ensure that all PEs in the working set have initialized pSync before
any of them enter a SHMEM routine called with the pSync synchronization
array. A pSync array can be reused on a subsequent SHMEM collective
routine only if none of the PEs in the active set are still processing a
prior SHMEM collective routine call that used the same pSync array. In
general, this may be ensured only by doing some type of synchronization.
However, in the special case of SHMEM routines being called with the
same active set, you can allocate two pSync arrays and alternate between
them on successive calls.
.sp
The collective routines operate on active PE sets that have a
non\-power\-of\-two PE_size with some performance degradation. They operate
with no performance degradation when nelems is a non\-power\-of\-two value.
.SH EXAMPLES
.sp
C/C++:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
for (i=0; i < _SHMEM_COLLECT_SYNC_SIZE; i++) {
pSync[i] = _SHMEM_SYNC_VALUE;
}
shmem_barrier_all(); /* Wait for all PEs to initialize pSync */
shmem_collect32(target, source, 64, pe_start, logPE_stride,
pe_size, pSync);
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Fortran:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
INTEGER PSYNC(SHMEM_COLLECT_SYNC_SIZE)
DATA PSYNC /SHMEM_COLLECT_SYNC_SIZE*SHMEM_SYNC_VALUE/
CALL SHMEM_COLLECT4(TARGET, SOURCE, 64, PE_START,
& LOGPE_STRIDE, PE_SIZE, PSYNC)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
\fIintro_shmem\fP(3)
.UNINDENT
.UNINDENT
.SH COPYRIGHT
2003-2025, The Open MPI Community
.\" Generated by docutils manpage writer.
.
|