1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
CUDA
====
.. error:: TODO This section needs to be converted from FAQ Q&A style
to regular documentation style.
How do I build Open MPI with CUDA-aware support?
------------------------------------------------
CUDA-aware support means that the MPI library can send and receive GPU
buffers directly. CUDA support is being continuously updated so
different levels of support exist in different versions. We recommend
you use the latest version of Open MPI for best support.
Open MPI offers two flavors of CUDA support:
#. Via `UCX <https://openucx.org/>`_.
This is the preferred mechanism. Since UCX will be providing the
CUDA support, it is important to ensure that UCX itself is built
with CUDA support.
To see if your ucx was built with CUDA support run the following
command:
.. code-block:: sh
# Check if ucx was built with CUDA support
shell$ ucx_info -v
# configured with: --build=powerpc64le-redhat-linux-gnu --host=powerpc64le-redhat-linux-gnu --program-prefix= --disable-dependency-tracking --prefix=/usr --exec-prefix=/usr --bindir=/usr/bin --sbindir=/usr/sbin --sysconfdir=/etc --datadir=/usr/share --includedir=/usr/include --libdir=/usr/lib64 --libexecdir=/usr/libexec --localstatedir=/var --sharedstatedir=/var/lib --mandir=/usr/share/man --infodir=/usr/share/info --disable-optimizations --disable-logging --disable-debug --disable-assertions --enable-mt --disable-params-check --enable-cma --without-cuda --without-gdrcopy --with-verbs --with-cm --with-knem --with-rdmacm --without-rocm --without-xpmem --without-ugni --without-java
If you need to build ucx yourself to include CUDA support, please
see the UCX documentation for `building ucx with Open MPI: <https://openucx.readthedocs.io/en/master/running.html#openmpi-with-ucx>`_
It should look something like:
.. code-block:: sh
# Configure UCX this way
shell$ ./configure --prefix=/path/to/ucx-cuda-install --with-cuda=/usr/local/cuda --with-gdrcopy=/usr
# Configure Open MPI this way
shell$ ./configure --with-cuda=/usr/local/cuda --with-ucx=/path/to/ucx-cuda-install <other configure params>
#. Via internal Open MPI CUDA support
Regardless of which flavor of CUDA support (or both) you plan to use,
Open MPI should be configured using the ``--with-cuda=<path-to-cuda>``
configure option to build CUDA support into Open MPI. The configure
script will automatically search the path given for ``libcuda.so``. If it cannot
be found, please also pass ``--with-cuda-libdir``. For example:
``--with-cuda=<path-to-cuda> --with-cuda-libdir=/usr/local/cuda/lib64/stubs``.
Open MPI supports building with CUDA libraries and running on systems
without CUDA libraries or hardware.
For releases v5.0.2 and newer no special steps are required to get this behavior.
In order to realize this behavior for the v5.0.0 and v5.0.1 releases,
when configuring Open MPI, you have to specify the CUDA dependent components to be built as DSOs using the
``--enable-mca-dso=<comma-delimited-list-of-cuda-components.``
configure option.
This affects the ``smcuda`` shared memory and ``uct`` BTLs, as well
as the ``rgpusm`` and ``gpusm`` rcache components.
An example configure command would look like the following:
.. code-block:: sh
# Configure Open MPI this way
shell$ ./configure --with-cuda=/usr/local/cuda \
--enable-mca-dso=btl-smcuda,rcache-rgpusm,rcache-gpusm,accelerator-cuda <other configure params>
/////////////////////////////////////////////////////////////////////////
How do I verify that Open MPI has been built with CUDA support?
---------------------------------------------------------------
Verify that Open MPI has been built with cuda using ``ompi_info``
with one of the following commands.
.. code-block:: sh
# Use ompi_info to verify cuda support in Open MPI
shell$ ompi_info | grep "MPI extensions"
MPI extensions: affinity, cuda, pcollreq
shell$ ompi_info --parsable --all | grep mpi_built_with_cuda_support:value
mca:mpi:base:param:mpi_built_with_cuda_support:value:true
/////////////////////////////////////////////////////////////////////////
How do I run Open MPI with applications that pass CUDA buffers to MPI?
----------------------------------------------------------------------
Open MPI will detect and enable CUDA enabled components at runtime with
no additional mpirun parameters.
/////////////////////////////////////////////////////////////////////////
How do I build Open MPI with CUDA-aware support using PGI?
----------------------------------------------------------
With CUDA 6.5, you can build all versions of CUDA-aware Open MPI
without doing anything special. However, with CUDA 7.0 and CUDA 7.5,
you need to pass in some specific compiler flags for things to work
correctly. Add the following to your configure line.
.. code-block:: sh
# For PGI 15.9 and later (Also called NVCC):
shell$ ./configure --with-wrapper-cflags=-ta:tesla
# For earlier versions of PGI:
shell$ ./configure CFLAGS=-D__LP64__ --with-wrapper-cflags="-D__LP64__ -ta:tesla"
/////////////////////////////////////////////////////////////////////////
What kind of CUDA support exists in Open MPI?
---------------------------------------------
CUDA-aware support is defined as Open MPI automatically detecting that
the argument pointer being passed to an MPI routine is a CUDA device
memory pointer.
See :ref:`this FAQ entry <faq-cuda-mpi-apis-cuda-label>`
for more details on which APIs are CUDA-aware.
.. error:: CUDA 4.0 is SUPER OLD! End users dont care about the
differences between cuda-aware, cuda-ipc, gpu-direct, and gpu-direct-rdma
Open MPI depends on various features of CUDA 4.0, so one needs to have
at least the CUDA 4.0 driver and toolkit. The new features of
interest are the Unified Virtual Addressing (UVA) so that all pointers
within a program have unique addresses. In addition, there is a new
API that allows one to determine if a pointer is a CUDA device pointer
or host memory pointer. This API is used by the library to decide
what needs to be done with each buffer. In addition, CUDA 4.1 also
provides the ability to register host memory with the CUDA driver,
which can improve performance. CUDA 4.1 also added CUDA IPC support
for fast communication between GPUs on the same node.
Note that derived datatypes |mdash| both contiguous and non-contiguous
|mdash| are supported. However, the non-contiguous datatypes
currently have high overhead because of the many calls to the CUDA
function ``cuMemcpy()`` to copy all the pieces of the buffer into the
intermediate buffer.
CUDA-aware support is available in:
* The UCX (``ucx``) PML
* The PSM2 (``psm2``) MTL with the CM (``cm``) PML.
* The OFI (``ofi``) MTL with the CM (``cm``) PML.
* Both CUDA-ized shared memory (``smcuda``) and TCP (``tcp``) BTLs
with the OB1 (``ob1``) PML.
* The HCOLL (``hcoll``) COLL
/////////////////////////////////////////////////////////////////////////
PSM2 support for CUDA
---------------------
CUDA-aware support is present in PSM2 MTL. When running CUDA-aware
Open MPI on Cornelis Networks Omni-Path, the PSM2 MTL will automatically set
``PSM2_CUDA`` environment variable which enables PSM2 to handle GPU
buffers. If the user wants to use host buffers with a CUDA-aware Open
MPI, it is recommended to set ``PSM2_CUDA`` to ``0`` in the execution
environment. PSM2 also has support for the NVIDIA GPUDirect support
feature. To enable this, users will need to set ``PSM2_GPUDIRECT``
to ``1`` in the execution environment.
Note: The PSM2 library and ``hfi1`` driver with CUDA support are requirements
to use GPUDirect support on Cornelis Networks Omni-Path. The minimum
PSM2 build version required is `PSM2 10.2.175
<https://github.com/01org/opa-psm2/releases/tag/PSM2_10.2-175>`_.
For more information refer to the `Cornelis Networks Customer Center
<https://customercenter.cornelisnetworks.com/>`_.
/////////////////////////////////////////////////////////////////////////
OFI support for CUDA
---------------------
CUDA-aware support is present in OFI MTL. When running CUDA-aware
Open MPI over Libfabric, the OFI MTL will check if there are any
providers capable of handling GPU (or other accelerator) memory
through the ``hmem``-related flags. If a CUDA-capable provider is
available, the OFI MTL will directly send GPU buffers through
Libfabric's API after registering the memory. If there are no
CUDA-capable providers available, the buffers will automatically
be copied to host buffers before being transferred through
Libfabric's API.
/////////////////////////////////////////////////////////////////////////
Can I get additional CUDA debug-level information at run-time?
--------------------------------------------------------------
Yes, by enabling some vebosity flags.
* The ``opal_cuda_verbose`` parameter has only one level of verbosity:
.. code-block::
shell$ mpirun --mca opal_cuda_verbose 10 ...
* The ``mpi_common_cuda_verbose`` parameter provides additional
information about CUDA-aware related activities. This can be set to
a variety of different values. There is really no need to use these
unless you have strange problems:
.. code-block:: sh
# A bunch of CUDA debug information
shell$ mpirun --mca mpi_common_cuda_verbose 10 ...
# Even more CUDA debug information
shell$ mpirun --mca mpi_common_cuda_verbose 20 ...
# Yet more CUDA debug information
shell$ mpirun --mca mpi_common_cuda_verbose 100 ...
* The ``smcuda`` BTL has three MCA parameters related to the use of
CUDA IPC. By default, CUDA IPC is used where possible. But the
user can now turn it off if they prefer.
.. code-block:: sh
shell$ mpirun --mca btl_smcuda_use_cuda_ipc 0 ...
In addition, it is assumed that CUDA IPC is possible when running on
the same GPU, and this is typically true. However, there is the
ability to turn it off.
.. code-block:: sh
shell$ mpirun --mca btl_smcuda_use_cuda_ipc_same_gpu 0 ...
Last, to get some insight into whether CUDA IPC is being used, you
can turn on some verbosity that shows whether CUDA IPC gets enabled
between two GPUs.
.. code-block:: sh
shell$ mpirun --mca btl_smcuda_cuda_ipc_verbose 100 ...
/////////////////////////////////////////////////////////////////////////
.. _faq-cuda-mpi-cuda-numa-issues-label:
NUMA Node Issues
----------------
When running on a node that has multiple GPUs, you may want to select
the GPU that is closest to the NUMA node on which your process is
running. One way to do this is to make use of the ``hwloc`` library.
The following is a C code snippet that can be used in your application
to select a GPU that is close. It will determine on which CPU it is
running and then look for the closest GPU. There could be multiple
GPUs that are the same distance away. This is dependent on having
``hwloc`` somewhere on your system.
.. code-block:: c
/**
* Test program to show the use of hwloc to select the GPU closest to the CPU
* that the MPI program is running on. Note that this works even without
* any libpciaccess or libpci support as it keys off the NVIDIA vendor ID.
* There may be other ways to implement this but this is one way.
* January 10, 2014
*/
#include <assert.h>
#include <stdio.h>
#include "cuda.h"
#include "mpi.h"
#include "hwloc.h"
#define ABORT_ON_ERROR(func) \
{ CUresult res; \
res = func; \
if (CUDA_SUCCESS != res) { \
printf("%s returned error=%d\n", #func, res); \
abort(); \
} \
}
static hwloc_topology_t topology = NULL;
static int gpuIndex = 0;
static hwloc_obj_t gpus[16] = {0};
/**
* This function searches for all the GPUs that are hanging off a NUMA
* node. It walks through each of the PCI devices and looks for ones
* with the NVIDIA vendor ID. It then stores them into an array.
* Note that there can be more than one GPU on the NUMA node.
*/
static void find_gpus(hwloc_topology_t topology, hwloc_obj_t parent, hwloc_obj_t child) {
hwloc_obj_t pcidev;
pcidev = hwloc_get_next_child(topology, parent, child);
if (NULL == pcidev) {
return;
} else if (0 != pcidev->arity) {
/* This device has children so need to look recursively at them */
find_gpus(topology, pcidev, NULL);
find_gpus(topology, parent, pcidev);
} else {
if (pcidev->attr->pcidev.vendor_id == 0x10de) {
gpus[gpuIndex++] = pcidev;
}
find_gpus(topology, parent, pcidev);
}
}
int main(int argc, char *argv[])
{
int rank, retval, length;
char procname[MPI_MAX_PROCESSOR_NAME+1];
const unsigned long flags = HWLOC_TOPOLOGY_FLAG_IO_DEVICES | HWLOC_TOPOLOGY_FLAG_IO_BRIDGES;
hwloc_cpuset_t newset;
hwloc_obj_t node, bridge;
char pciBusId[16];
CUdevice dev;
char devName[256];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (MPI_SUCCESS != MPI_Get_processor_name(procname, &length)) {
strcpy(procname, "unknown");
}
/* Now decide which GPU to pick. This requires hwloc to work properly.
* We first see which CPU we are bound to, then try and find a GPU nearby.
*/
retval = hwloc_topology_init(&topology);
assert(retval == 0);
retval = hwloc_topology_set_flags(topology, flags);
assert(retval == 0);
retval = hwloc_topology_load(topology);
assert(retval == 0);
newset = hwloc_bitmap_alloc();
retval = hwloc_get_last_cpu_location(topology, newset, 0);
assert(retval == 0);
/* Get the object that contains the cpuset */
node = hwloc_get_first_largest_obj_inside_cpuset(topology, newset);
/* Climb up from that object until we find the HWLOC_OBJ_NODE */
while (node->type != HWLOC_OBJ_NODE) {
node = node->parent;
}
/* Now look for the HWLOC_OBJ_BRIDGE. All PCI busses hanging off the
* node will have one of these */
bridge = hwloc_get_next_child(topology, node, NULL);
while (bridge->type != HWLOC_OBJ_BRIDGE) {
bridge = hwloc_get_next_child(topology, node, bridge);
}
/* Now find all the GPUs on this NUMA node and put them into an array */
find_gpus(topology, bridge, NULL);
ABORT_ON_ERROR(cuInit(0));
/* Now select the first GPU that we find */
if (gpus[0] == 0) {
printf("No GPU found\n");
} else {
sprintf(pciBusId, "%.2x:%.2x:%.2x.%x", gpus[0]->attr->pcidev.domain, gpus[0]->attr->pcidev.bus,
gpus[0]->attr->pcidev.dev, gpus[0]->attr->pcidev.func);
ABORT_ON_ERROR(cuDeviceGetByPCIBusId(&dev, pciBusId));
ABORT_ON_ERROR(cuDeviceGetName(devName, 256, dev));
printf("rank=%d (%s): Selected GPU=%s, name=%s\n", rank, procname, pciBusId, devName);
}
MPI_Finalize();
return 0;
}
/////////////////////////////////////////////////////////////////////////
How do I develop CUDA-aware Open MPI applications?
--------------------------------------------------
Developing CUDA-aware applications is a complex topic, and beyond the
scope of this document. CUDA-aware applications often have to take
machine-specific considerations into account, including the number of
GPUs installed on each node and how the GPUs are connected to the CPUs
and to each other. Often, when using a particular transport layer
(such as OPA/PSM2) there will be run-time decisions to make about
which CPU cores will be used with which GPUs.
A good place to start is the `NVIDIA CUDA Toolkit Documentation
<https://docs.nvidia.com/cuda/>`_ including the `Programming Guide
<https://docs.nvidia.com/cuda/cuda-c-programming-guide/>`_ and the
`Best Practices Guide
<https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/>`_. For
examples of how to write CUDA-aware MPI applications, the `NVIDIA
developers blog
<https://github.com/NVIDIA-developer-blog/code-samples/tree/master/posts/cuda-aware-mpi-example>`_
offers examples and the `OSU Micro-Benchmarks
<https://mvapich.cse.ohio-state.edu/benchmarks/>`_ offer an excellent
example of how to write CUDA-aware MPI applications.
/////////////////////////////////////////////////////////////////////////
.. _faq-cuda-mpi-apis-cuda-label:
Which MPI APIs work with CUDA-aware?
------------------------------------
* MPI_Allgather
* MPI_Allgatherv
* MPI_Allreduce
* MPI_Alltoall
* MPI_Alltoallv
* MPI_Alltoallw
* MPI_Bcast
* MPI_Bsend
* MPI_Bsend_init
* MPI_Exscan
* MPI_Ibsend
* MPI_Irecv
* MPI_Isend
* MPI_Irsend
* MPI_Issend
* MPI_Gather
* MPI_Gatherv
* MPI_Get
* MPI_Put
* MPI_Rsend
* MPI_Rsend_init
* MPI_Recv
* MPI_Recv_init
* MPI_Reduce
* MPI_Reduce_scatter
* MPI_Reduce_scatter_block
* MPI_Scan
* MPI_Scatter
* MPI_Scatterv
* MPI_Send
* MPI_Send_init
* MPI_Sendrecv
* MPI_Ssend
* MPI_Ssend_init
* MPI_Win_create
.. FIXME: We need to verify the above list.
/////////////////////////////////////////////////////////////////////////
Which MPI APIs do NOT work with CUDA-aware?
-------------------------------------------
* MPI_Accumulate
* MPI_Compare_and_swap
* MPI_Fetch_and_op
* MPI_Get_Accumulate
* MPI_Iallgather
* MPI_Iallgatherv
* MPI_Iallreduce
* MPI_Ialltoall
* MPI_Ialltoallv
* MPI_Ialltoallw
* MPI_Ibcast
* MPI_Iexscan
* MPI_Rget
* MPI_Rput
.. FIXME: We need to verify the above list.
/////////////////////////////////////////////////////////////////////////
How do I use CUDA-aware UCX for Open MPI?
-----------------------------------------
Example of running ``osu_latency`` from the `OSU benchmarks
<https://mvapich.cse.ohio-state.edu/benchmarks>`_ with CUDA buffers
using Open MPI and UCX CUDA support:
.. code-block::
shell$ mpirun -n 2 --mca pml ucx \
-x UCX_TLS=rc,sm,cuda_copy,gdr_copy,cuda_ipc ./osu_latency D D
/////////////////////////////////////////////////////////////////////////
Which MPI APIs work with CUDA-aware UCX?
----------------------------------------
* MPI_Send
* MPI_Bsend
* MPI_Ssend
* MPI_Rsend
* MPI_Isend
* MPI_Ibsend
* MPI_Issend
* MPI_Irsend
* MPI_Send_init
* MPI_Bsend_init
* MPI_Ssend_init
* MPI_Rsend_init
* MPI_Recv
* MPI_Irecv
* MPI_Recv_init
* MPI_Sendrecv
* MPI_Bcast
* MPI_Gather
* MPI_Gatherv
* MPI_Allgather
* MPI_Reduce
* MPI_Reduce_scatter
* MPI_Reduce_scatter_block
* MPI_Allreduce
* MPI_Scan
* MPI_Exscan
* MPI_Allgatherv
* MPI_Alltoall
* MPI_Alltoallv
* MPI_Alltoallw
* MPI_Scatter
* MPI_Scatterv
* MPI_Iallgather
* MPI_Iallgatherv
* MPI_Ialltoall
* MPI_Iialltoallv
* MPI_Ialltoallw
* MPI_Ibcast
* MPI_Iexscan
.. FIXME: We need to verify the above list. These _SHOULD_ be the same
as above.
/////////////////////////////////////////////////////////////////////////
Which MPI APIs do NOT work with CUDA-aware UCX?
-----------------------------------------------
* All one-sided operations such as MPI_Put, MPI_Get, MPI_Accumulate,
MPI_Rget, MPI_Rput, MPI_Get_Accumulate, MPI_Fetch_and_op,
MPI_Compare_and_swap, etc
* All window creation calls such as MPI_Win_create
* All non-blocking reduction collectives like MPI_Ireduce,
MPI_Iallreduce, etc
.. FIXME: Checking with nVidia. This may be more of an issue of OSC_UCX
not supporting CUDA, though perhaps it's just performance.
/////////////////////////////////////////////////////////////////////////
Can I tell at compile time or runtime whether I have CUDA-aware support?
------------------------------------------------------------------------
There is both a compile time check and a run-time check available.
You can use whichever is the most convenient for your program. To
access them, you need to include ``mpi-ext.h``. Note that
``mpi-ext.h`` is specific to Open MPI. The following program shows an
example of using the CUDA-aware macro and run-time check.
.. code-block:: c
/*
* Program that shows the use of CUDA-aware macro and runtime check.
*/
#include <stdio.h>
#include "mpi.h"
#if !defined(OPEN_MPI) || !OPEN_MPI
#error This source code uses an Open MPI-specific extension
#endif
/* Needed for MPIX_Query_cuda_support(), below */
#include "mpi-ext.h"
int main(int argc, char *argv[])
{
MPI_Init(&argc, &argv);
printf("Compile time check:\n");
#if defined(MPIX_CUDA_AWARE_SUPPORT) && MPIX_CUDA_AWARE_SUPPORT
printf("This MPI library has CUDA-aware support.\n", MPIX_CUDA_AWARE_SUPPORT);
#elif defined(MPIX_CUDA_AWARE_SUPPORT) && !MPIX_CUDA_AWARE_SUPPORT
printf("This MPI library does not have CUDA-aware support.\n");
#else
printf("This MPI library cannot determine if there is CUDA-aware support.\n");
#endif /* MPIX_CUDA_AWARE_SUPPORT */
printf("Run time check:\n");
#if defined(MPIX_CUDA_AWARE_SUPPORT)
if (1 == MPIX_Query_cuda_support()) {
printf("This MPI library has CUDA-aware support.\n");
} else {
printf("This MPI library does not have CUDA-aware support.\n");
}
#else /* !defined(MPIX_CUDA_AWARE_SUPPORT) */
printf("This MPI library cannot determine if there is CUDA-aware support.\n");
#endif /* MPIX_CUDA_AWARE_SUPPORT */
MPI_Finalize();
return 0;
}
/////////////////////////////////////////////////////////////////////////
How do I limit how much CUDA IPC memory is held in the registration cache?
--------------------------------------------------------------------------
As mentioned earlier, the Open MPI library will make use of CUDA IPC support where
possible to move the GPU data quickly between GPUs that are on the same node and
same PCI root complex. The library holds on to registrations even after the data
transfer is complete as it is expensive to make some of the CUDA IPC registration
calls. If you want to limit how much memory is registered, you can use the
``mpool_rgpusm_rcache_size_limit`` MCA parameter. For example, this sets the limit
to 1000000 bytes:
.. code-block::
shell$ mpirun --mca mpool_rgpusm_rcache_size_limit 1000000 ...
When the cache reaches this size, it will kick out the least recently used until
it can fit the new registration in.
There also is the ability to have the cache empty itself out when the
limit is reached:
.. code-block::
shell$ mpirun --mca mpool_rgpusm_rcache_empty_cache 1 ...
/////////////////////////////////////////////////////////////////////////
What are some guidelines for using CUDA and Open MPI with Omni-Path?
--------------------------------------------------------------------
When developing CUDA-aware Open MPI applications for OPA-based fabrics, the
PSM2 transport is preferred and a CUDA-aware version of PSM2 is provided with
all versions of the Cornelis Networks Omni-Path OPXS software suite.
.. error:: TODO Are Intel/OPA references still correct?
The PSM2 library provides a number of settings that will govern how it
will interact with CUDA, including ``PSM2_CUDA`` and ``PSM2_GPUDIRECT``,
which should be set in the environment before ``MPI_Init()`` is called. For
example:
.. code-block::
shell$ mpirun -x PSM2_CUDA=1 -x PSM2_GPUDIRECT=1 --mca mtl psm2 mpi_hello
In addition, each process of the application should select a specific
GPU card to use before calling ``MPI_Init()``, by using
``cudaChooseDevice()``, ``cudaSetDevice()`` and similar. The chosen
GPU should be within the same NUMA node as the CPU the MPI process is
running on. You will also want to use the ``mpirun``
``--bind-to-core`` or ``--bind-to-socket`` option to ensure that MPI
processes do not move between NUMA nodes. See the section on
:ref:`NUMA Node Issues <faq-cuda-mpi-cuda-numa-issues-label>`, for
more information.
For more information see the *Cornelis Networks Performance Scaled Messaging 2
(PSM2) Programmer's Guide* and the *Cornelis Networks Omni-Path Performance
Tuning Guide*, which can be found in the `Cornelis Networks Customer Center
<https://customercenter.cornelisnetworks.com/>`_.
.. error:: TODO Are Intel/OPA references still correct?
/////////////////////////////////////////////////////////////////////////
When do I need to select a CUDA device?
---------------------------------------
"mpi-cuda-dev-selection"
OpenMPI requires CUDA resources allocated for internal use. These
are allocated lazily when they are first needed, e.g. CUDA IPC mem handles
are created when a communication routine first requires them during a
transfer. So, the CUDA device needs to be selected before the first MPI
call requiring a CUDA resource. MPI_Init and most communicator related
operations do not create any CUDA resources (guaranteed for MPI_Init,
MPI_Comm_rank, MPI_Comm_size, MPI_Comm_split_type and MPI_Comm_free). It
is thus possible to use those routines to query rank information and use
those to select a GPU, e.g. using
.. code-block:: c
int local_rank = -1;
{
MPI_Comm local_comm;
MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, rank, MPI_INFO_NULL, &local_comm);
MPI_Comm_rank(local_comm, &local_rank);
MPI_Comm_free(&local_comm);
}
int num_devices = 0;
cudaGetDeviceCount(&num_devices);
cudaSetDevice(local_rank % num_devices);
MPI internal CUDA resources are released during MPI_Finalize. Thus it is an
application error to call cudaDeviceReset before MPI_Finalize is called.
/////////////////////////////////////////////////////////////////////////
How do I enable CUDA support in HCOLL collective component
----------------------------------------------------------
HCOLL component supports CUDA GPU buffers for the following
collectives:
MPI_Allreduce
MPI_Bcast
MPI_Allgather
MPI_Ibarrier
MPI_Ibcast
MPI_Iallgather
MPI_Iallreduce
To enable CUDA GPU buffer support in these collectives pass the
following environment variables via mpirun:
.. code-block::
shell$ mpirun -x HCOLL_GPU_ENABLE=1 -x HCOLL_ENABLE_NBC=1 ..
See `nVidia HCOLL documentation <https://docs.nvidia.com/networking/display/HPCXv29/HCOLL>`_
for more information.
|