1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
|
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2013 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2015-2018 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2020 Google, LLC. All rights reserved.
* Copyright (c) 2025 NVIDIA Corporation. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/*
* @file
*/
#include "opal_config.h"
#include "opal/class/opal_interval_tree.h"
#include <limits.h>
/* Private functions */
static void opal_interval_tree_insert_node(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node);
/* tree rebalancing functions */
static void opal_interval_tree_delete_fixup(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node,
opal_interval_tree_node_t *parent);
static void opal_interval_tree_insert_fixup(opal_interval_tree_t *tree,
opal_interval_tree_node_t *x);
static opal_interval_tree_node_t *opal_interval_tree_next(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node);
static opal_interval_tree_node_t *
opal_interval_tree_find_node(opal_interval_tree_t *tree, uint64_t low, uint64_t high, void *data);
static opal_interval_tree_node_t *left_rotate(opal_interval_tree_t *tree,
opal_interval_tree_node_t *x);
static opal_interval_tree_node_t *right_rotate(opal_interval_tree_t *tree,
opal_interval_tree_node_t *x);
static void inorder_destroy(opal_interval_tree_t *tree, opal_interval_tree_node_t *node);
#define max(x, y) (((x) > (y)) ? (x) : (y))
/**
* the constructor function. creates the free list to get the nodes from
*
* @param object the tree that is to be used
*
* @retval NONE
*/
static void opal_interval_tree_construct(opal_interval_tree_t *tree)
{
OBJ_CONSTRUCT(&tree->root, opal_interval_tree_node_t);
OBJ_CONSTRUCT(&tree->nill, opal_interval_tree_node_t);
OBJ_CONSTRUCT(&tree->free_list, opal_free_list_t);
OBJ_CONSTRUCT(&tree->gc_list, opal_list_t);
/* initialize sentinel */
tree->nill.color = OPAL_INTERVAL_TREE_COLOR_BLACK;
tree->nill.left = tree->nill.right = tree->nill.parent = &tree->nill;
tree->nill.max = 0;
tree->nill.data = NULL;
/* initialize root sentinel */
tree->root.color = OPAL_INTERVAL_TREE_COLOR_BLACK;
tree->root.left = tree->root.right = tree->root.parent = &tree->nill;
/* this simplifies inserting at the root as we only have to check the
* low value. */
tree->root.low = (uint64_t) -1;
tree->root.data = NULL;
/* set the tree size to zero */
tree->tree_size = 0;
tree->lock = 0;
tree->reader_count = 0;
tree->reader_id = 0;
tree->epoch = 0;
/* set all reader epochs to UINT_MAX. this value is used to simplify
* checks against the current epoch. */
for (int i = 0; i < OPAL_INTERVAL_TREE_MAX_READERS; ++i) {
tree->reader_epochs[i] = UINT_MAX;
}
}
/**
* the destructor function. Free the tree and destroys the free list.
*
* @param object the tree object
*/
static void opal_interval_tree_destruct(opal_interval_tree_t *tree)
{
opal_interval_tree_destroy(tree);
OBJ_DESTRUCT(&tree->free_list);
OBJ_DESTRUCT(&tree->root);
OBJ_DESTRUCT(&tree->nill);
}
/* declare the instance of the classes */
OBJ_CLASS_INSTANCE(opal_interval_tree_node_t, opal_free_list_item_t, NULL, NULL);
OBJ_CLASS_INSTANCE(opal_interval_tree_t, opal_object_t, opal_interval_tree_construct,
opal_interval_tree_destruct);
typedef int32_t opal_interval_tree_token_t;
/**
* @brief pick and return a reader slot
*/
static opal_interval_tree_token_t opal_interval_tree_reader_get_token(opal_interval_tree_t *tree)
{
opal_interval_tree_token_t token = -1;
if (token < 0) {
int32_t reader_count = tree->reader_count;
/* NTH: could have used an atomic here but all we are after is some distribution of threads
* across the reader slots. with high thread counts i see no real performance difference
* using atomics. */
token = tree->reader_id++ % OPAL_INTERVAL_TREE_MAX_READERS;
while (OPAL_UNLIKELY(reader_count <= token)) {
if (opal_atomic_compare_exchange_strong_32(&tree->reader_count, &reader_count,
token + 1)) {
break;
}
}
}
while (
!OPAL_ATOMIC_COMPARE_EXCHANGE_STRONG_32((opal_atomic_int32_t *) &tree->reader_epochs[token],
&(int32_t){UINT_MAX}, tree->epoch)) {
}
return token;
}
static void opal_interval_tree_reader_return_token(opal_interval_tree_t *tree,
opal_interval_tree_token_t token)
{
tree->reader_epochs[token] = UINT_MAX;
}
/* Create the tree */
int opal_interval_tree_init(opal_interval_tree_t *tree)
{
return opal_free_list_init(&tree->free_list, sizeof(opal_interval_tree_node_t),
opal_cache_line_size, OBJ_CLASS(opal_interval_tree_node_t), 0,
opal_cache_line_size, 0, -1, 128, NULL, 0, NULL, NULL, NULL);
}
static bool opal_interval_tree_write_trylock(opal_interval_tree_t *tree)
{
opal_atomic_rmb();
return !(tree->lock || opal_atomic_swap_32(&tree->lock, 1));
}
static void opal_interval_tree_write_lock(opal_interval_tree_t *tree)
{
while (!opal_interval_tree_write_trylock(tree)) {
}
}
static void opal_interval_tree_write_unlock(opal_interval_tree_t *tree)
{
opal_atomic_wmb();
tree->lock = 0;
}
static void opal_interval_tree_insert_fixup_helper(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node)
{
opal_interval_tree_node_t *y, *parent = node->parent;
bool rotate_right = false;
if (parent->color == OPAL_INTERVAL_TREE_COLOR_BLACK) {
return;
}
if (parent == parent->parent->left) {
y = parent->parent->right;
rotate_right = true;
} else {
y = parent->parent->left;
}
if (y->color == OPAL_INTERVAL_TREE_COLOR_RED) {
parent->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
y->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
parent->parent->color = OPAL_INTERVAL_TREE_COLOR_RED;
opal_interval_tree_insert_fixup_helper(tree, parent->parent);
return;
}
if (rotate_right) {
if (node == parent->right) {
node = left_rotate(tree, parent);
parent = node->parent;
}
parent->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
parent->parent->color = OPAL_INTERVAL_TREE_COLOR_RED;
(void) right_rotate(tree, parent->parent);
} else {
if (node == parent->left) {
node = right_rotate(tree, parent);
parent = node->parent;
}
parent->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
parent->parent->color = OPAL_INTERVAL_TREE_COLOR_RED;
(void) left_rotate(tree, parent->parent);
}
opal_interval_tree_insert_fixup_helper(tree, node);
}
static void opal_interval_tree_insert_fixup(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node)
{
/* do the rotations */
/* usually one would have to check for NULL, but because of the sentinal,
* we don't have to */
opal_interval_tree_insert_fixup_helper(tree, node);
/* after the rotations the root is black */
tree->root.left->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
}
/**
* @brief Guts of the delete fixup
*
* @param[in] tree opal interval tree
* @param[in] node node to fixup
* @param[in] left true if the node is a left child of its parent
*
* @returns the next node to fixup or root if done
*/
static inline opal_interval_tree_node_t *
opal_interval_tree_delete_fixup_helper(opal_interval_tree_t *tree, opal_interval_tree_node_t *node,
opal_interval_tree_node_t *parent, const bool left)
{
opal_interval_tree_node_t *w;
/* get sibling */
w = left ? parent->right : parent->left;
if (w->color == OPAL_INTERVAL_TREE_COLOR_RED) {
w->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
parent->color = OPAL_INTERVAL_TREE_COLOR_RED;
if (left) {
(void) left_rotate(tree, parent);
w = parent->right;
} else {
(void) right_rotate(tree, parent);
w = parent->left;
}
}
if ((w->left->color == OPAL_INTERVAL_TREE_COLOR_BLACK)
&& (w->right->color == OPAL_INTERVAL_TREE_COLOR_BLACK)) {
w->color = OPAL_INTERVAL_TREE_COLOR_RED;
return parent;
}
if (left) {
if (w->right->color == OPAL_INTERVAL_TREE_COLOR_BLACK) {
w->left->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
w->color = OPAL_INTERVAL_TREE_COLOR_RED;
(void) right_rotate(tree, w);
w = parent->right;
}
w->color = parent->color;
parent->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
w->right->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
(void) left_rotate(tree, parent);
} else {
if (w->left->color == OPAL_INTERVAL_TREE_COLOR_BLACK) {
w->right->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
w->color = OPAL_INTERVAL_TREE_COLOR_RED;
(void) left_rotate(tree, w);
w = parent->left;
}
w->color = parent->color;
parent->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
w->left->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
(void) right_rotate(tree, parent);
}
/* return the root */
return tree->root.left;
}
/* Fixup the balance of the btree after deletion */
static void opal_interval_tree_delete_fixup(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node,
opal_interval_tree_node_t *parent)
{
while ((node != tree->root.left) && (node->color == OPAL_INTERVAL_TREE_COLOR_BLACK)) {
node = opal_interval_tree_delete_fixup_helper(tree, node, parent, node == parent->left);
parent = node->parent;
}
node->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
tree->nill.color = OPAL_INTERVAL_TREE_COLOR_BLACK;
}
/* traverse the garbage-collection list and return any nodes that can not have any
* references. this function MUST be called with the writer lock held. */
static void opal_interval_tree_gc_clean(opal_interval_tree_t *tree)
{
opal_interval_tree_node_t *node, *next;
uint32_t oldest_epoch = UINT_MAX;
if (0 == opal_list_get_size(&tree->gc_list)) {
return;
}
for (int i = 0; i < tree->reader_count; ++i) {
oldest_epoch = (oldest_epoch < tree->reader_epochs[i]) ? oldest_epoch
: tree->reader_epochs[i];
}
OPAL_LIST_FOREACH_SAFE (node, next, &tree->gc_list, opal_interval_tree_node_t) {
if (node->epoch < oldest_epoch) {
opal_list_remove_item(&tree->gc_list, &node->super.super);
opal_free_list_return_st(&tree->free_list, &node->super);
}
}
}
/* This inserts a node into the tree based on the passed values. */
int opal_interval_tree_insert(opal_interval_tree_t *tree, void *value, uint64_t low, uint64_t high)
{
opal_interval_tree_node_t *node;
if (low > high) {
return OPAL_ERR_BAD_PARAM;
}
opal_interval_tree_write_lock(tree);
opal_interval_tree_gc_clean(tree);
/* get the memory for a node */
node = (opal_interval_tree_node_t *) opal_free_list_get(&tree->free_list);
if (OPAL_UNLIKELY(NULL == node)) {
opal_interval_tree_write_unlock(tree);
return OPAL_ERR_OUT_OF_RESOURCE;
}
/* insert the data into the node */
node->data = value;
node->low = low;
node->high = high;
node->max = high;
node->epoch = tree->epoch;
/* insert the node into the tree */
opal_interval_tree_insert_node(tree, node);
opal_interval_tree_insert_fixup(tree, node);
opal_interval_tree_write_unlock(tree);
return OPAL_SUCCESS;
}
static int opal_interval_tree_compare_node(opal_interval_tree_node_t *node, uint64_t low,
uint64_t high, void *data)
{
if ((data && node->low == low && node->high == high && node->data == data)
|| (!data && node->low <= low && node->high >= high)) {
return 0;
}
if (node->low > low) {
return -1;
}
if (node->low < low) {
return 1;
}
if (node->high < high) {
return -1;
}
if (node->high > high) {
return 1;
}
if (node->data > data) {
return -1;
}
return 1;
}
static opal_interval_tree_node_t *opal_interval_tree_find_interval(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node,
uint64_t low, uint64_t high,
void *data)
{
if (node == &tree->nill) {
return NULL;
}
int check = opal_interval_tree_compare_node(node, low, high, data);
if (0 == check) {
return node;
}
if (-1 == check) {
return opal_interval_tree_find_interval(tree, node->left, low, high, data);
}
return opal_interval_tree_find_interval(tree, node->right, low, high, data);
}
/* Finds the node in the tree based on the key and returns a pointer
* to the node. This is a bit a code duplication, but this has to be fast
* so we go ahead with the duplication */
static opal_interval_tree_node_t *
opal_interval_tree_find_node(opal_interval_tree_t *tree, uint64_t low, uint64_t high, void *data)
{
return opal_interval_tree_find_interval(tree, tree->root.left, low, high, data);
}
void *opal_interval_tree_find_overlapping(opal_interval_tree_t *tree, uint64_t low, uint64_t high)
{
opal_interval_tree_token_t token;
opal_interval_tree_node_t *node;
token = opal_interval_tree_reader_get_token(tree);
node = opal_interval_tree_find_node(tree, low, high, NULL);
opal_interval_tree_reader_return_token(tree, token);
return node ? node->data : NULL;
}
static size_t opal_interval_tree_depth_node(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node)
{
if (&tree->nill == node) {
return 0;
}
return 1
+ max(opal_interval_tree_depth_node(tree, node->right),
opal_interval_tree_depth_node(tree, node->left));
}
size_t opal_interval_tree_depth(opal_interval_tree_t *tree)
{
opal_interval_tree_token_t token;
size_t depth;
token = opal_interval_tree_reader_get_token(tree);
depth = opal_interval_tree_depth_node(tree, &tree->root);
opal_interval_tree_reader_return_token(tree, token);
return depth;
}
/* update the value of a tree pointer */
static inline void rp_publish(opal_interval_tree_node_t **ptr, opal_interval_tree_node_t *node)
{
/* ensure all writes complete before continuing */
opal_atomic_wmb();
/* just set the value */
*ptr = node;
}
static inline void rp_wait_for_readers(opal_interval_tree_t *tree)
{
uint32_t epoch_id = ++tree->epoch;
/* wait for all readers to see the new tree version */
for (int i = 0; i < tree->reader_count; ++i) {
while (tree->reader_epochs[i] < epoch_id) {
}
}
}
/* waits for all writers to finish with the node then releases the last reference */
static inline void rp_free_wait(opal_interval_tree_t *tree, opal_interval_tree_node_t *node)
{
rp_wait_for_readers(tree);
/* no other threads are working on this node so go ahead and return it */
opal_free_list_return_st(&tree->free_list, &node->super);
}
/* schedules the node for releasing */
static inline void rp_free(opal_interval_tree_t *tree, opal_interval_tree_node_t *node)
{
opal_list_append(&tree->gc_list, &node->super.super);
}
static opal_interval_tree_node_t *opal_interval_tree_node_copy(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node)
{
opal_interval_tree_node_t *copy = (opal_interval_tree_node_t *) opal_free_list_wait_st(
&tree->free_list);
size_t color_offset = offsetof(opal_interval_tree_node_t, color);
assert(NULL != copy);
memcpy((unsigned char *) copy + color_offset, (unsigned char *) node + color_offset,
sizeof(*node) - color_offset);
return copy;
}
/* this function deletes a node that is either a left or right leaf (or both) */
static void opal_interval_tree_delete_leaf(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node)
{
const opal_interval_tree_node_t *nill = &tree->nill;
opal_interval_tree_node_t **parent_ptr, *next, *parent = node->parent;
opal_interval_tree_nodecolor_t color = node->color;
assert(node->left == nill || node->right == nill);
parent_ptr = (parent->right == node) ? &parent->right : &parent->left;
next = (node->right == nill) ? node->left : node->right;
next->parent = node->parent;
rp_publish(parent_ptr, next);
rp_free(tree, node);
if (OPAL_INTERVAL_TREE_COLOR_BLACK == color) {
if (OPAL_INTERVAL_TREE_COLOR_RED == next->color) {
next->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
} else {
opal_interval_tree_delete_fixup(tree, next, parent);
}
}
}
static void opal_interval_tree_delete_interior(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node)
{
opal_interval_tree_node_t **parent_ptr, *next, *next_copy, *parent = node->parent;
opal_interval_tree_nodecolor_t color = node->color, next_color;
parent_ptr = (parent->right == node) ? &parent->right : &parent->left;
next = opal_interval_tree_next(tree, node);
next_color = next->color;
if (next != node->right) {
/* case 3 */
next_copy = opal_interval_tree_node_copy(tree, next);
next_copy->color = node->color;
next_copy->left = node->left;
next_copy->left->parent = next_copy;
next_copy->right = node->right;
next_copy->right->parent = next_copy;
next_copy->parent = node->parent;
rp_publish(parent_ptr, next_copy);
rp_free_wait(tree, node);
opal_interval_tree_delete_leaf(tree, next);
} else {
/* case 2. no copies are needed */
next->color = color;
next->left = node->left;
next->left->parent = next;
next->parent = node->parent;
rp_publish(parent_ptr, next);
rp_free(tree, node);
/* since we are actually "deleting" the next node the fixup needs to happen on the
* right child of next (by definition next was a left child) */
if (OPAL_INTERVAL_TREE_COLOR_BLACK == next_color) {
if (OPAL_INTERVAL_TREE_COLOR_RED == next->right->color) {
next->right->color = OPAL_INTERVAL_TREE_COLOR_BLACK;
} else {
opal_interval_tree_delete_fixup(tree, next->right, next);
}
}
}
}
/* Delete a node from the tree based on the key */
int opal_interval_tree_delete(opal_interval_tree_t *tree, uint64_t low, uint64_t high, void *data)
{
opal_interval_tree_node_t *node;
opal_interval_tree_write_lock(tree);
node = opal_interval_tree_find_node(tree, low, high, data);
if (NULL == node) {
opal_interval_tree_write_unlock(tree);
return OPAL_ERR_NOT_FOUND;
}
/* there are three cases that have to be handled:
* 1) the node p is a left leaf or a right left (one of p's children is nill)
* in this case we can delete p and we can replace it with one of it's children
* or nill (if both children are nill).
* 2) the right child of p is a left leaf (node->right->left == nill)
* in this case we can set node->right->left = node->left and replace node with node->right
* 3) p is a interior node
* we replace node with next(node)
*/
if ((node->left == &tree->nill) || (node->right == &tree->nill)) {
/* handle case 1 */
opal_interval_tree_delete_leaf(tree, node);
} else {
/* handle case 2 and 3 */
opal_interval_tree_delete_interior(tree, node);
}
--tree->tree_size;
opal_interval_tree_write_unlock(tree);
return OPAL_SUCCESS;
}
int opal_interval_tree_destroy(opal_interval_tree_t *tree)
{
/* Recursive inorder traversal for delete */
inorder_destroy(tree, &tree->root);
tree->tree_size = 0;
return OPAL_SUCCESS;
}
/* Find the next inorder successor of a node */
static opal_interval_tree_node_t *opal_interval_tree_next(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node)
{
opal_interval_tree_node_t *p = node->right;
if (p == &tree->nill) {
p = node->parent;
while (node == p->right) {
node = p;
p = p->parent;
}
if (p == &tree->root) {
return &tree->nill;
}
return p;
}
while (p->left != &tree->nill) {
p = p->left;
}
return p;
}
/* Insert an element in the normal binary search tree fashion */
/* this function goes through the tree and finds the leaf where
* the node will be inserted */
static void opal_interval_tree_insert_node(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node)
{
opal_interval_tree_node_t *parent = &tree->root;
opal_interval_tree_node_t *n = parent->left; /* the real root of the tree */
opal_interval_tree_node_t *nill = &tree->nill;
/* set up initial values for the node */
node->color = OPAL_INTERVAL_TREE_COLOR_RED;
node->parent = NULL;
node->left = nill;
node->right = nill;
/* find the leaf where we will insert the node */
int check = -1;
while (n != nill) {
check = opal_interval_tree_compare_node(n, node->low, node->high, node->data);
/* node already exists */
assert(0 != check);
if (n->max < node->high) {
n->max = node->high;
}
parent = n;
n = (-1 == check) ? n->left : n->right;
assert(nill == n || n->parent == parent);
}
/* place it on either the left or the right */
if (-1 == check) {
parent->left = node;
} else {
parent->right = node;
}
/* set its parent and children */
node->parent = parent;
++tree->tree_size;
}
static int inorder_traversal(opal_interval_tree_t *tree, uint64_t low, uint64_t high,
bool partial_ok, opal_interval_tree_action_fn_t action,
opal_interval_tree_node_t *node, void *ctx)
{
int rc;
if (node == &tree->nill) {
return OPAL_SUCCESS;
}
rc = inorder_traversal(tree, low, high, partial_ok, action, node->left, ctx);
if (OPAL_SUCCESS != rc) {
return rc;
}
if ((!partial_ok && (node->low <= low && node->high >= high))
|| (partial_ok
&& ((low >= node->low && low <= node->high) || (high >= node->low && high <= node->high)
|| (node->low >= low && node->low <= high)
|| (node->high >= high && node->high <= high)))) {
rc = action(node->low, node->high, node->data, ctx);
if (OPAL_SUCCESS != rc) {
return rc;
}
}
return inorder_traversal(tree, low, high, partial_ok, action, node->right, ctx);
}
/* Free the nodes in inorder fashion */
static void inorder_destroy(opal_interval_tree_t *tree, opal_interval_tree_node_t *node)
{
if (node == &tree->nill) {
return;
}
inorder_destroy(tree, node->left);
inorder_destroy(tree, node->right);
if (node->left != &tree->nill) {
opal_free_list_return_st(&tree->free_list, &node->left->super);
}
if (node->right != &tree->nill) {
opal_free_list_return_st(&tree->free_list, &node->right->super);
}
}
/* Try to access all the elements of the hashmap conditionally */
int opal_interval_tree_traverse(opal_interval_tree_t *tree, uint64_t low, uint64_t high,
bool partial_ok, opal_interval_tree_action_fn_t action, void *ctx)
{
opal_interval_tree_token_t token;
int rc;
if (action == NULL) {
return OPAL_ERR_BAD_PARAM;
}
token = opal_interval_tree_reader_get_token(tree);
rc = inorder_traversal(tree, low, high, partial_ok, action, tree->root.left, ctx);
opal_interval_tree_reader_return_token(tree, token);
return rc;
}
/* Left rotate the tree */
/* basically what we want to do is to make x be the left child
* of its right child */
static opal_interval_tree_node_t *left_rotate(opal_interval_tree_t *tree,
opal_interval_tree_node_t *x)
{
opal_interval_tree_node_t *x_copy = x;
opal_interval_tree_node_t *y = x->right;
opal_interval_tree_node_t *parent = x->parent;
/* make the left child of y's parent be x if it is not the sentinal node*/
if (y->left != &tree->nill) {
y->left->parent = x_copy;
}
/* x's parent is now y */
x_copy->parent = y;
x_copy->right = y->left;
x_copy->max = max(x_copy->high, max(x_copy->left->max, x_copy->left->max));
rp_publish(&y->left, x_copy);
/* normally we would have to check to see if we are at the root.
* however, the root sentinal takes care of it for us */
if (x == parent->left) {
rp_publish(&parent->left, y);
} else {
rp_publish(&parent->right, y);
}
/* the old parent of x is now y's parent */
y->parent = parent;
return x_copy;
}
/* Right rotate the tree */
/* basically what we want to do is to make x be the right child
* of its left child */
static opal_interval_tree_node_t *right_rotate(opal_interval_tree_t *tree,
opal_interval_tree_node_t *x)
{
opal_interval_tree_node_t *x_copy = x;
opal_interval_tree_node_t *y = x->left;
opal_interval_tree_node_t *parent = x->parent;
/* make the left child of y's parent be x if it is not the sentinal node*/
if (y->right != &tree->nill) {
y->right->parent = x_copy;
}
x_copy->left = y->right;
x_copy->parent = y;
rp_publish(&y->right, x_copy);
/* the maximum value in the subtree rooted at y is now the value it
* was at x */
y->max = x->max;
y->parent = parent;
if (parent->left == x) {
rp_publish(&parent->left, y);
} else {
rp_publish(&parent->right, y);
}
return x_copy;
}
/* returns the size of the tree */
size_t opal_interval_tree_size(opal_interval_tree_t *tree)
{
return tree->tree_size;
}
static bool opal_interval_tree_verify_node(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node, int black_depth,
int current_black_depth)
{
if (node == &tree->nill) {
return true;
}
if (OPAL_INTERVAL_TREE_COLOR_RED == node->color
&& (OPAL_INTERVAL_TREE_COLOR_BLACK != node->left->color
|| OPAL_INTERVAL_TREE_COLOR_BLACK != node->right->color)) {
fprintf(stderr, "Red node has a red child!\n");
return false;
}
if (OPAL_INTERVAL_TREE_COLOR_BLACK == node->color) {
current_black_depth++;
}
if (node->left == &tree->nill && node->right == &tree->nill) {
if (black_depth != current_black_depth) {
fprintf(stderr, "Found leaf with unexpected black depth: %d, expected: %d\n",
current_black_depth, black_depth);
return false;
}
return true;
}
return opal_interval_tree_verify_node(tree, node->left, black_depth, current_black_depth)
|| opal_interval_tree_verify_node(tree, node->right, black_depth, current_black_depth);
}
static int opal_interval_tree_black_depth(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node, int depth)
{
if (node == &tree->nill) {
return depth;
}
/* suffices to always go left */
if (OPAL_INTERVAL_TREE_COLOR_BLACK == node->color) {
depth++;
}
return opal_interval_tree_black_depth(tree, node->left, depth);
}
bool opal_interval_tree_verify(opal_interval_tree_t *tree)
{
int black_depth;
if (OPAL_INTERVAL_TREE_COLOR_BLACK != tree->root.left->color) {
fprintf(stderr, "Root node of tree is NOT black!\n");
return false;
}
if (OPAL_INTERVAL_TREE_COLOR_BLACK != tree->nill.color) {
fprintf(stderr, "Leaf node color is NOT black!\n");
return false;
}
black_depth = opal_interval_tree_black_depth(tree, tree->root.left, 0);
return opal_interval_tree_verify_node(tree, tree->root.left, black_depth, 0);
}
static void opal_interval_tree_dump_node(opal_interval_tree_t *tree,
opal_interval_tree_node_t *node, int black_rank, FILE *fh)
{
const char *color = (node->color == OPAL_INTERVAL_TREE_COLOR_BLACK) ? "black" : "red";
uintptr_t left = (uintptr_t) node->left, right = (uintptr_t) node->right;
opal_interval_tree_node_t *nill = &tree->nill;
if (node->color == OPAL_INTERVAL_TREE_COLOR_BLACK) {
++black_rank;
}
if (nill == node) {
return;
}
/* print out nill nodes if any */
if ((uintptr_t) nill == left) {
left = (uintptr_t) node | 0x1;
fprintf(fh, " Node%lx [color=black,label=nill];\n\n", left);
} else {
left = (uintptr_t) node->left;
}
if ((uintptr_t) nill == right) {
right = (uintptr_t) node | 0x2;
fprintf(fh, " Node%lx [color=black,label=nill];\n\n", right);
} else {
right = (uintptr_t) node->right;
}
/* print out this node and its edges */
fprintf(fh,
" Node%lx [color=%s,shape=box,label=\"[0x%" PRIx64 ",0x%" PRIx64 "]\\nmax=0x%" PRIx64
"\\ndata=0x%lx\\nblack rank=%d\"];\n",
(uintptr_t) node, color, node->low, node->high, node->max, (uintptr_t) node->data,
black_rank);
fprintf(fh, " Node%lx -> Node%lx;\n", (uintptr_t) node, left);
fprintf(fh, " Node%lx -> Node%lx;\n\n", (uintptr_t) node, right);
if (node != tree->root.left) {
fprintf(fh, " Node%lx -> Node%lx;\n\n", (uintptr_t) node, (uintptr_t) node->parent);
}
opal_interval_tree_dump_node(tree, node->left, black_rank, fh);
opal_interval_tree_dump_node(tree, node->right, black_rank, fh);
}
int opal_interval_tree_dump(opal_interval_tree_t *tree, const char *path)
{
FILE *fh;
fh = fopen(path, "w");
if (NULL == fh) {
return OPAL_ERR_BAD_PARAM;
}
fprintf(fh, "digraph {\n");
fprintf(fh, " graph [ordering=\"out\"];");
opal_interval_tree_dump_node(tree, tree->root.left, 0, fh);
fprintf(fh, "}\n");
fclose(fh);
return OPAL_SUCCESS;
}
|