1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2013 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2015 Los Alamos National Security, LLC. All rights
* reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/*
* @file
*/
#include "opal_config.h"
#include "opal/class/opal_rb_tree.h"
/* Private functions */
static void btree_insert(opal_rb_tree_t *tree, opal_rb_tree_node_t *node);
static void btree_delete_fixup(opal_rb_tree_t *tree, opal_rb_tree_node_t *x);
static opal_rb_tree_node_t *btree_successor(opal_rb_tree_t *tree, opal_rb_tree_node_t *node);
static opal_rb_tree_node_t *opal_rb_tree_find_node(opal_rb_tree_t *tree, void *key);
static void left_rotate(opal_rb_tree_t *tree, opal_rb_tree_node_t *x);
static void right_rotate(opal_rb_tree_t *tree, opal_rb_tree_node_t *x);
static void inorder_destroy(opal_rb_tree_t *tree, opal_rb_tree_node_t *node);
static void inorder_traversal(opal_rb_tree_t *tree, opal_rb_tree_condition_fn_t cond,
opal_rb_tree_action_fn_t action, opal_rb_tree_node_t *node);
/**
* the constructor function. creates the free list to get the nodes from
*
* @param object the tree that is to be used
*
* @retval NONE
*/
static void opal_rb_tree_construct(opal_object_t *object)
{
opal_rb_tree_t *tree = (opal_rb_tree_t *) object;
tree->root_ptr = NULL;
OBJ_CONSTRUCT(&(tree->free_list), opal_free_list_t);
opal_free_list_init(&(tree->free_list), sizeof(opal_rb_tree_node_t), opal_cache_line_size,
OBJ_CLASS(opal_rb_tree_node_t), 0, opal_cache_line_size, 0, -1, 128, NULL,
0, NULL, NULL, NULL);
}
/**
* the destructor function. Free the tree and destroys the free list.
*
* @param object the tree object
*/
static void opal_rb_tree_destruct(opal_object_t *object)
{
if (NULL != ((opal_rb_tree_t *) object)->root_ptr) {
opal_rb_tree_destroy((opal_rb_tree_t *) object);
}
OBJ_DESTRUCT(&(((opal_rb_tree_t *) object)->free_list));
return;
}
/* declare the instance of the classes */
OBJ_CLASS_INSTANCE(opal_rb_tree_node_t, opal_free_list_item_t, NULL, NULL);
OBJ_CLASS_INSTANCE(opal_rb_tree_t, opal_object_t, opal_rb_tree_construct, opal_rb_tree_destruct);
/* Create the tree */
int opal_rb_tree_init(opal_rb_tree_t *tree, opal_rb_tree_comp_fn_t comp)
{
opal_free_list_item_t *node;
/* we need to get memory for the root pointer from the free list */
node = opal_free_list_get(&(tree->free_list));
tree->root_ptr = (opal_rb_tree_node_t *) node;
if (NULL == node) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
node = opal_free_list_get(&(tree->free_list));
if (NULL == node) {
opal_free_list_return(&tree->free_list, (opal_free_list_item_t *) tree->root_ptr);
return OPAL_ERR_OUT_OF_RESOURCE;
}
tree->nill = (opal_rb_tree_node_t *) node;
/* initialize tree->nill */
tree->nill->color = BLACK;
tree->nill->left = tree->nill;
tree->nill->right = tree->nill;
tree->nill->parent = tree->nill;
/* initialize the 'root' pointer */
tree->root_ptr->left = tree->nill;
tree->root_ptr->right = tree->nill;
tree->root_ptr->parent = tree->nill;
tree->root_ptr->color = BLACK;
tree->comp = comp;
/* set the tree size to zero */
tree->tree_size = 0;
return OPAL_SUCCESS;
}
/* This inserts a node into the tree based on the passed values. */
int opal_rb_tree_insert(opal_rb_tree_t *tree, void *key, void *value)
{
opal_rb_tree_node_t *y;
opal_rb_tree_node_t *node;
opal_free_list_item_t *item;
/* get the memory for a node */
item = opal_free_list_get(&tree->free_list);
if (NULL == item) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
node = (opal_rb_tree_node_t *) item;
/* insert the data into the node */
node->key = key;
node->value = value;
/* insert the node into the tree */
btree_insert(tree, node);
/*do the rotations */
/* usually one would have to check for NULL, but because of the sentinal,
* we don't have to */
while (node->parent->color == RED) {
if (node->parent == node->parent->parent->left) {
y = node->parent->parent->right;
if (y->color == RED) {
node->parent->color = BLACK;
y->color = BLACK;
node->parent->parent->color = RED;
node = node->parent->parent;
} else {
if (node == node->parent->right) {
node = node->parent;
left_rotate(tree, node);
}
node->parent->color = BLACK;
node->parent->parent->color = RED;
right_rotate(tree, node->parent->parent);
}
} else {
y = node->parent->parent->left;
if (y->color == RED) {
node->parent->color = BLACK;
y->color = BLACK;
node->parent->parent->color = RED;
node = node->parent->parent;
} else {
if (node == node->parent->left) {
node = node->parent;
right_rotate(tree, node);
}
node->parent->color = BLACK;
node->parent->parent->color = RED;
left_rotate(tree, node->parent->parent);
}
}
}
/* after the rotations the root is black */
tree->root_ptr->left->color = BLACK;
return OPAL_SUCCESS;
}
/* Finds the node in the tree based on the key */
void *opal_rb_tree_find_with(opal_rb_tree_t *tree, void *key, opal_rb_tree_comp_fn_t compfn)
{
opal_rb_tree_node_t *node;
int compvalue;
node = tree->root_ptr->left;
while (node != tree->nill) {
compvalue = compfn(key, node->key);
/* if the result of the comparison function is 0, we found it */
if (compvalue == 0) {
return node->value;
}
/* else if it is less than 0, go left, else right */
node = ((compvalue < 0) ? node->left : node->right);
}
/* if we didn't find anything, return NULL */
return NULL;
}
/* Finds the node in the tree based on the key and returns a pointer
* to the node. This is a bit a code duplication, but this has to be fast
* so we go ahead with the duplication */
static opal_rb_tree_node_t *opal_rb_tree_find_node(opal_rb_tree_t *tree, void *key)
{
opal_rb_tree_node_t *node;
int compvalue;
node = tree->root_ptr->left;
while (node != tree->nill) {
compvalue = tree->comp(key, node->key);
/* if the result of the comparison function is 0, we found it */
if (compvalue == 0) {
return node;
}
/* else if it is less than 0, go left, else right */
node = ((compvalue < 0) ? node->left : node->right);
}
/* if we didn't find anything, return NULL */
return NULL;
}
/* Delete a node from the tree based on the key */
int opal_rb_tree_delete(opal_rb_tree_t *tree, void *key)
{
opal_rb_tree_node_t *p;
opal_rb_tree_node_t *todelete;
opal_rb_tree_node_t *y;
opal_free_list_item_t *item;
p = opal_rb_tree_find_node(tree, key);
if (NULL == p) {
return OPAL_ERR_NOT_FOUND;
}
if ((p->left == tree->nill) || (p->right == tree->nill)) {
todelete = p;
} else {
todelete = btree_successor(tree, p);
}
if (todelete->left == tree->nill) {
y = todelete->right;
} else {
y = todelete->left;
}
y->parent = todelete->parent;
if (y->parent == tree->root_ptr) {
tree->root_ptr->left = y;
} else {
if (todelete == todelete->parent->left) {
todelete->parent->left = y;
} else {
todelete->parent->right = y;
}
}
if (todelete != p) {
p->key = todelete->key;
p->value = todelete->value;
}
if (todelete->color == BLACK) {
btree_delete_fixup(tree, y);
}
item = (opal_free_list_item_t *) todelete;
opal_free_list_return(&(tree->free_list), item);
--tree->tree_size;
return OPAL_SUCCESS;
}
/* Destroy the hashmap */
int opal_rb_tree_destroy(opal_rb_tree_t *tree)
{
opal_free_list_item_t *item;
/* Recursive inorder traversal for delete */
inorder_destroy(tree, tree->root_ptr);
/* Now free the root -- root does not get free'd in the above
* inorder destroy */
item = (opal_free_list_item_t *) tree->root_ptr;
opal_free_list_return(&(tree->free_list), item);
/* free the tree->nill node */
item = (opal_free_list_item_t *) tree->nill;
opal_free_list_return(&(tree->free_list), item);
return OPAL_SUCCESS;
}
/* Find the next inorder successor of a node */
static opal_rb_tree_node_t *btree_successor(opal_rb_tree_t *tree, opal_rb_tree_node_t *node)
{
opal_rb_tree_node_t *p;
if (node->right == tree->nill) {
p = node->parent;
while (node == p->right) {
node = p;
p = p->parent;
}
if (p == tree->root_ptr) {
return tree->nill;
}
return p;
}
p = node->right;
while (p->left != tree->nill) {
p = p->left;
}
return p;
}
/* Insert an element in the normal binary search tree fashion */
/* this function goes through the tree and finds the leaf where
* the node will be inserted */
static void btree_insert(opal_rb_tree_t *tree, opal_rb_tree_node_t *node)
{
opal_rb_tree_node_t *parent = tree->root_ptr;
opal_rb_tree_node_t *n = parent->left; /* the real root of the tree */
/* set up initial values for the node */
node->color = RED;
node->parent = NULL;
node->left = tree->nill;
node->right = tree->nill;
/* find the leaf where we will insert the node */
while (n != tree->nill) {
parent = n;
n = ((tree->comp(node->key, n->key) <= 0) ? n->left : n->right);
}
/* place it on either the left or the right */
if ((parent == tree->root_ptr) || (tree->comp(node->key, parent->key) <= 0)) {
parent->left = node;
} else {
parent->right = node;
}
/* set its parent and children */
node->parent = parent;
node->left = tree->nill;
node->right = tree->nill;
++(tree->tree_size);
return;
}
/* Fixup the balance of the btree after deletion */
static void btree_delete_fixup(opal_rb_tree_t *tree, opal_rb_tree_node_t *x)
{
opal_rb_tree_node_t *w;
opal_rb_tree_node_t *root = tree->root_ptr->left;
while ((x != root) && (x->color == BLACK)) {
if (x == x->parent->left) {
w = x->parent->right;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
left_rotate(tree, x->parent);
w = x->parent->right;
}
if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
w->color = RED;
x = x->parent;
} else {
if (w->right->color == BLACK) {
w->left->color = BLACK;
w->color = RED;
right_rotate(tree, w);
w = x->parent->right;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->right->color = BLACK;
left_rotate(tree, x->parent);
x = root;
}
} else { /* right */
w = x->parent->left;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
right_rotate(tree, x->parent);
w = x->parent->left;
}
if ((w->right->color == BLACK) && (w->left->color == BLACK)) {
w->color = RED;
x = x->parent;
} else {
if (w->left->color == BLACK) {
w->right->color = BLACK;
w->color = RED;
left_rotate(tree, w);
w = x->parent->left;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->left->color = BLACK;
right_rotate(tree, x->parent);
x = root;
}
}
}
x->color = BLACK;
return;
}
/* Free the nodes in inorder fashion */
static void inorder_destroy(opal_rb_tree_t *tree, opal_rb_tree_node_t *node)
{
opal_free_list_item_t *item;
if (node == tree->nill) {
return;
}
inorder_destroy(tree, node->left);
if (node->left != tree->nill) {
item = (opal_free_list_item_t *) node->left;
--tree->tree_size;
opal_free_list_return(&tree->free_list, item);
}
inorder_destroy(tree, node->right);
if (node->right != tree->nill) {
item = (opal_free_list_item_t *) node->right;
--tree->tree_size;
opal_free_list_return(&tree->free_list, item);
}
}
/* Try to access all the elements of the hashmap conditionally */
int opal_rb_tree_traverse(opal_rb_tree_t *tree, opal_rb_tree_condition_fn_t cond,
opal_rb_tree_action_fn_t action)
{
if ((cond == NULL) || (action == NULL)) {
return OPAL_ERROR;
}
inorder_traversal(tree, cond, action, tree->root_ptr->left);
return OPAL_SUCCESS;
}
static void inorder_traversal(opal_rb_tree_t *tree, opal_rb_tree_condition_fn_t cond,
opal_rb_tree_action_fn_t action, opal_rb_tree_node_t *node)
{
if (node == tree->nill) {
return;
}
inorder_traversal(tree, cond, action, node->left);
if (cond(node->value)) {
action(node->key, node->value);
}
inorder_traversal(tree, cond, action, node->right);
}
/* Left rotate the tree */
/* basically what we want to do is to make x be the left child
* of its right child */
static void left_rotate(opal_rb_tree_t *tree, opal_rb_tree_node_t *x)
{
opal_rb_tree_node_t *y;
y = x->right;
/* make the left child of y's parent be x if it is not the sentinal node*/
if (y->left != tree->nill) {
y->left->parent = x;
}
/* normally we would have to check to see if we are at the root.
* however, the root sentinal takes care of it for us */
if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
/* the old parent of x is now y's parent */
y->parent = x->parent;
/* x's parent is y */
x->parent = y;
x->right = y->left;
y->left = x;
return;
}
/* Right rotate the tree */
/* basically what we want to do is to make x be the right child
* of its left child */
static void right_rotate(opal_rb_tree_t *tree, opal_rb_tree_node_t *x)
{
opal_rb_tree_node_t *y;
y = x->left;
if (y->right != tree->nill) {
y->right->parent = x;
}
if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
y->parent = x->parent;
x->parent = y;
x->left = y->right;
y->right = x;
return;
}
/* returns the size of the tree */
int opal_rb_tree_size(opal_rb_tree_t *tree)
{
return tree->tree_size;
}
/* below are a couple of debugging functions */
#if 0
# include <stdio.h>
static void inorder(opal_rb_tree_t * tree, opal_rb_tree_node_t * node);
static void print_inorder(opal_rb_tree_t * tree);
void inorder(opal_rb_tree_t * tree, opal_rb_tree_node_t * node)
{
static int level = 0;
if (node == tree->nill) {
printf("nill\n");
return;
}
level++;
inorder(tree, node->left);
level--;
printf("%d, level: %d\n", *((int *)node->value), level);
level++;
inorder(tree, node->right);
level--;
}
void print_inorder(opal_rb_tree_t *tree)
{
inorder(tree, tree->root_ptr->left);
}
#endif
|