1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
|
/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
* Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2019 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2006 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2006 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2009 Oak Ridge National Labs. All rights reserved.
* Copyright (c) 2011 NVIDIA Corporation. All rights reserved.
* Copyright (c) 2013-2018 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* Copyright (c) 2017 Intel, Inc. All rights reserved
* Copyright (c) 2022 Amazon.com, Inc. or its affiliates. All Rights reserved.
* Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "opal_config.h"
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include "opal/prefetch.h"
#include "opal/util/arch.h"
#include "opal/util/output.h"
#include "opal/datatype/opal_convertor.h"
#include "opal/datatype/opal_convertor_internal.h"
#include "opal/datatype/opal_datatype.h"
#include "opal/datatype/opal_datatype_checksum.h"
#include "opal/datatype/opal_datatype_internal.h"
#include "opal/datatype/opal_datatype_prototypes.h"
#include "opal/mca/accelerator/accelerator.h"
#define MEMCPY_ACCELERATOR(DST, SRC, BLENGTH, CONVERTOR) \
CONVERTOR->cbmemcpy((DST), (SRC), (BLENGTH), (CONVERTOR))
static void *opal_convertor_accelerator_memcpy(void *dest, const void *src, size_t size, opal_convertor_t *convertor)
{
int res;
if (!(convertor->flags & CONVERTOR_ACCELERATOR)) {
return MEMCPY(dest, src, size);
}
res = opal_accelerator.mem_copy(MCA_ACCELERATOR_NO_DEVICE_ID, MCA_ACCELERATOR_NO_DEVICE_ID,
dest, src, size, MCA_ACCELERATOR_TRANSFER_UNSPEC);
if (OPAL_SUCCESS != res) {
opal_output(0, "Error in accelerator memcpy");
abort();
} else {
return dest;
}
}
static void opal_convertor_construct(opal_convertor_t *convertor)
{
convertor->pStack = convertor->static_stack;
convertor->stack_size = DT_STATIC_STACK_SIZE;
convertor->partial_length = 0;
convertor->remoteArch = opal_local_arch;
convertor->flags = OPAL_DATATYPE_FLAG_NO_GAPS | CONVERTOR_COMPLETED;
convertor->cbmemcpy = &opal_convertor_accelerator_memcpy;
}
static void opal_convertor_destruct(opal_convertor_t *convertor)
{
opal_convertor_cleanup(convertor);
}
OBJ_CLASS_INSTANCE(opal_convertor_t, opal_object_t, opal_convertor_construct,
opal_convertor_destruct);
static opal_convertor_master_t *opal_convertor_master_list = NULL;
extern conversion_fct_t opal_datatype_heterogeneous_copy_functions[OPAL_DATATYPE_MAX_PREDEFINED];
extern conversion_fct_t opal_datatype_copy_functions[OPAL_DATATYPE_MAX_PREDEFINED];
void opal_convertor_destroy_masters(void)
{
opal_convertor_master_t *master = opal_convertor_master_list;
while (NULL != master) {
opal_convertor_master_list = master->next;
master->next = NULL;
/* Cleanup the conversion function if not one of the defaults */
if ((master->pFunctions != opal_datatype_heterogeneous_copy_functions)
&& (master->pFunctions != opal_datatype_copy_functions)) {
free(master->pFunctions);
}
free(master);
master = opal_convertor_master_list;
}
}
/**
* Find or create a convertor suitable for the remote architecture. If there
* is already a master convertor for this architecture then return it.
* Otherwise, create and initialize a full featured master convertor.
*/
opal_convertor_master_t *opal_convertor_find_or_create_master(uint32_t remote_arch)
{
opal_convertor_master_t *master = opal_convertor_master_list;
int i;
size_t *remote_sizes;
while (NULL != master) {
if (master->remote_arch == remote_arch) {
return master;
}
master = master->next;
}
/**
* Create a new convertor matching the specified architecture and add it to the
* master convertor list.
*/
master = (opal_convertor_master_t *) malloc(sizeof(opal_convertor_master_t));
master->next = opal_convertor_master_list;
opal_convertor_master_list = master;
master->remote_arch = remote_arch;
master->flags = 0;
master->hetero_mask = 0;
/**
* Most of the sizes will be identical, so for now just make a copy of
* the local ones. As master->remote_sizes is defined as being an array of
* consts we have to manually cast it before using it for writing purposes.
*/
remote_sizes = (size_t *) master->remote_sizes;
memcpy(remote_sizes, opal_datatype_local_sizes, sizeof(size_t) * OPAL_DATATYPE_MAX_PREDEFINED);
/**
* If the local and remote architecture are the same there is no need
* to check for the remote data sizes. They will always be the same as
* the local ones.
*/
if (master->remote_arch == opal_local_arch) {
master->pFunctions = opal_datatype_copy_functions;
master->flags |= CONVERTOR_HOMOGENEOUS;
return master;
}
/* Find out the remote bool size */
if (opal_arch_checkmask(&master->remote_arch, OPAL_ARCH_BOOLIS8)) {
remote_sizes[OPAL_DATATYPE_BOOL] = 1;
} else if (opal_arch_checkmask(&master->remote_arch, OPAL_ARCH_BOOLIS16)) {
remote_sizes[OPAL_DATATYPE_BOOL] = 2;
} else if (opal_arch_checkmask(&master->remote_arch, OPAL_ARCH_BOOLIS32)) {
remote_sizes[OPAL_DATATYPE_BOOL] = 4;
} else {
opal_output(0, "Unknown sizeof(bool) for the remote architecture\n");
}
if (opal_arch_checkmask(&master->remote_arch, OPAL_ARCH_LONGIS64)) {
remote_sizes[OPAL_DATATYPE_LONG] = 8;
remote_sizes[OPAL_DATATYPE_UNSIGNED_LONG] = 8;
} else {
remote_sizes[OPAL_DATATYPE_LONG] = 4;
remote_sizes[OPAL_DATATYPE_UNSIGNED_LONG] = 4;
}
/**
* Now we can compute the conversion mask. For all sizes where the remote
* and local architecture differ a conversion is needed. Moreover, if the
* 2 architectures don't have the same endianness all data with a length
* over 2 bytes (with the exception of logicals) have to be byte-swapped.
*/
for (i = OPAL_DATATYPE_FIRST_TYPE; i < OPAL_DATATYPE_MAX_PREDEFINED; i++) {
if (remote_sizes[i] != opal_datatype_local_sizes[i]) {
master->hetero_mask |= (((uint32_t) 1) << i);
}
}
if (opal_arch_checkmask(&master->remote_arch, OPAL_ARCH_ISBIGENDIAN)
!= opal_arch_checkmask(&opal_local_arch, OPAL_ARCH_ISBIGENDIAN)) {
uint32_t hetero_mask = 0;
for (i = OPAL_DATATYPE_FIRST_TYPE; i < OPAL_DATATYPE_MAX_PREDEFINED; i++) {
if (remote_sizes[i] > 1) {
hetero_mask |= (((uint32_t) 1) << i);
}
}
hetero_mask &= ~(((uint32_t) 1) << OPAL_DATATYPE_BOOL);
master->hetero_mask |= hetero_mask;
}
master->pFunctions = (conversion_fct_t *) malloc(
sizeof(opal_datatype_heterogeneous_copy_functions));
/**
* Usually the heterogeneous functions are slower than the copy ones. Let's
* try to minimize the usage of the heterogeneous versions.
*/
for (i = OPAL_DATATYPE_FIRST_TYPE; i < OPAL_DATATYPE_MAX_PREDEFINED; i++) {
if (master->hetero_mask & (((uint32_t) 1) << i)) {
master->pFunctions[i] = opal_datatype_heterogeneous_copy_functions[i];
} else {
master->pFunctions[i] = opal_datatype_copy_functions[i];
}
}
/* We're done so far, return the master convertor */
return master;
}
opal_convertor_t *opal_convertor_create(int32_t remote_arch, int32_t mode)
{
opal_convertor_t *convertor = OBJ_NEW(opal_convertor_t);
opal_convertor_master_t *master;
master = opal_convertor_find_or_create_master(remote_arch);
convertor->remoteArch = remote_arch;
convertor->stack_pos = 0;
convertor->flags = master->flags;
convertor->master = master;
return convertor;
}
#define OPAL_CONVERTOR_SET_STATUS_BEFORE_PACK_UNPACK(CONVERTOR, IOV, OUT, MAX_DATA) \
do { \
/* protect against over packing data */ \
if (OPAL_UNLIKELY((CONVERTOR)->flags & CONVERTOR_COMPLETED)) { \
(IOV)[0].iov_len = 0; \
*(OUT) = 0; \
*(MAX_DATA) = 0; \
return 1; /* nothing to do */ \
} \
(CONVERTOR)->checksum = OPAL_CSUM_ZERO; \
(CONVERTOR)->csum_ui1 = 0; \
(CONVERTOR)->csum_ui2 = 0; \
assert((CONVERTOR)->bConverted < (CONVERTOR)->local_size); \
} while (0)
/**
* Return 0 if everything went OK and if there is still room before the complete
* conversion of the data (need additional call with others input buffers )
* 1 if everything went fine and the data was completely converted
* -1 something wrong occurs.
*/
int32_t opal_convertor_pack(opal_convertor_t *pConv, struct iovec *iov, uint32_t *out_size,
size_t *max_data)
{
OPAL_CONVERTOR_SET_STATUS_BEFORE_PACK_UNPACK(pConv, iov, out_size, max_data);
if (OPAL_LIKELY(pConv->flags & CONVERTOR_NO_OP)) {
/**
* We are doing conversion on a contiguous datatype on a homogeneous
* environment. The convertor contain minimal information, we only
* use the bConverted to manage the conversion.
*/
uint32_t i;
unsigned char *base_pointer;
size_t pending_length = pConv->local_size - pConv->bConverted;
*max_data = pending_length;
opal_convertor_get_current_pointer(pConv, (void **) &base_pointer);
for (i = 0; i < *out_size; i++) {
if (iov[i].iov_len >= pending_length) {
goto complete_contiguous_data_pack;
}
if (OPAL_LIKELY(NULL == iov[i].iov_base)) {
iov[i].iov_base = (IOVBASE_TYPE *) base_pointer;
} else {
MEMCPY_ACCELERATOR(iov[i].iov_base, base_pointer, iov[i].iov_len, pConv);
}
pending_length -= iov[i].iov_len;
base_pointer += iov[i].iov_len;
}
*max_data -= pending_length;
pConv->bConverted += (*max_data);
return 0;
complete_contiguous_data_pack:
iov[i].iov_len = pending_length;
if (OPAL_LIKELY(NULL == iov[i].iov_base)) {
iov[i].iov_base = (IOVBASE_TYPE *) base_pointer;
} else {
MEMCPY_ACCELERATOR(iov[i].iov_base, base_pointer, iov[i].iov_len, pConv);
}
pConv->bConverted = pConv->local_size;
*out_size = i + 1;
pConv->flags |= CONVERTOR_COMPLETED;
return 1;
}
return pConv->fAdvance(pConv, iov, out_size, max_data);
}
int32_t opal_convertor_unpack(opal_convertor_t *pConv, struct iovec *iov, uint32_t *out_size,
size_t *max_data)
{
OPAL_CONVERTOR_SET_STATUS_BEFORE_PACK_UNPACK(pConv, iov, out_size, max_data);
if (OPAL_LIKELY(pConv->flags & CONVERTOR_NO_OP)) {
/**
* We are doing conversion on a contiguous datatype on a homogeneous
* environment. The convertor contain minimal information, we only
* use the bConverted to manage the conversion.
*/
uint32_t i;
unsigned char *base_pointer;
size_t pending_length = pConv->local_size - pConv->bConverted;
*max_data = pending_length;
opal_convertor_get_current_pointer(pConv, (void **) &base_pointer);
for (i = 0; i < *out_size; i++) {
if (iov[i].iov_len >= pending_length) {
goto complete_contiguous_data_unpack;
}
MEMCPY_ACCELERATOR(base_pointer, iov[i].iov_base, iov[i].iov_len, pConv);
pending_length -= iov[i].iov_len;
base_pointer += iov[i].iov_len;
}
*max_data -= pending_length;
pConv->bConverted += (*max_data);
return 0;
complete_contiguous_data_unpack:
iov[i].iov_len = pending_length;
MEMCPY_ACCELERATOR(base_pointer, iov[i].iov_base, iov[i].iov_len, pConv);
pConv->bConverted = pConv->local_size;
*out_size = i + 1;
pConv->flags |= CONVERTOR_COMPLETED;
return 1;
}
return pConv->fAdvance(pConv, iov, out_size, max_data);
}
static inline int opal_convertor_create_stack_with_pos_contig(opal_convertor_t *pConvertor,
size_t starting_point,
const size_t *sizes)
{
dt_stack_t *pStack; /* pointer to the position on the stack */
const opal_datatype_t *pData = pConvertor->pDesc;
dt_elem_desc_t *pElems;
size_t count;
ptrdiff_t extent;
pStack = pConvertor->pStack;
/**
* The prepare function already make the selection on which data representation
* we have to use: normal one or the optimized version ?
*/
pElems = pConvertor->use_desc->desc;
count = starting_point / pData->size;
extent = pData->ub - pData->lb;
pStack[0].type = OPAL_DATATYPE_LOOP; /* the first one is always the loop */
pStack[0].count = pConvertor->count - count;
pStack[0].index = -1;
pStack[0].disp = count * extent;
/* now compute the number of pending bytes */
count = starting_point % pData->size;
/**
* We save the current displacement starting from the beginning
* of this data.
*/
if (OPAL_LIKELY(0 == count)) {
pStack[1].type = pElems->elem.common.type;
pStack[1].count = pElems->elem.blocklen;
} else {
pStack[1].type = OPAL_DATATYPE_UINT1;
pStack[1].count = pData->size - count;
}
pStack[1].disp = count;
pStack[1].index = 0; /* useless */
pConvertor->bConverted = starting_point;
pConvertor->stack_pos = 1;
assert(0 == pConvertor->partial_length);
return OPAL_SUCCESS;
}
static inline int opal_convertor_create_stack_at_begining(opal_convertor_t *convertor,
const size_t *sizes)
{
dt_stack_t *pStack = convertor->pStack;
dt_elem_desc_t *pElems;
/**
* The prepare function already make the selection on which data representation
* we have to use: normal one or the optimized version ?
*/
pElems = convertor->use_desc->desc;
convertor->stack_pos = 1;
convertor->partial_length = 0;
convertor->bConverted = 0;
/**
* Fill the first position on the stack. This one correspond to the
* last fake OPAL_DATATYPE_END_LOOP that we add to the data representation and
* allow us to move quickly inside the datatype when we have a count.
*/
pStack[0].index = -1;
pStack[0].count = convertor->count;
pStack[0].disp = 0;
pStack[0].type = OPAL_DATATYPE_LOOP;
pStack[1].index = 0;
pStack[1].disp = 0;
if (pElems[0].elem.common.type == OPAL_DATATYPE_LOOP) {
pStack[1].count = pElems[0].loop.loops;
pStack[1].type = OPAL_DATATYPE_LOOP;
} else {
pStack[1].count = (size_t) pElems[0].elem.count * pElems[0].elem.blocklen;
pStack[1].type = pElems[0].elem.common.type;
}
return OPAL_SUCCESS;
}
int32_t opal_convertor_set_position_nocheck(opal_convertor_t *convertor, size_t *position)
{
int32_t rc;
/**
* create_stack_with_pos_contig always set the position relative to the ZERO
* position, so there is no need for special handling. In all other cases,
* if we plan to rollback the convertor then first we have to reset it at
* the beginning.
*/
if (OPAL_LIKELY(convertor->flags & OPAL_DATATYPE_FLAG_CONTIGUOUS)) {
rc = opal_convertor_create_stack_with_pos_contig(convertor, (*position),
opal_datatype_local_sizes);
} else {
if ((0 == (*position)) || ((*position) < convertor->bConverted)) {
rc = opal_convertor_create_stack_at_begining(convertor, opal_datatype_local_sizes);
if (0 == (*position)) {
return rc;
}
}
rc = opal_convertor_generic_simple_position(convertor, position);
/**
* If we have a non-contiguous send convertor don't allow it move in the middle
* of a predefined datatype, it won't be able to copy out the left-overs
* anyway. Instead force the position to stay on predefined datatypes
* boundaries. As we allow partial predefined datatypes on the contiguous
* case, we should be accepted by any receiver convertor.
*/
if (CONVERTOR_SEND & convertor->flags) {
convertor->bConverted -= convertor->partial_length;
convertor->partial_length = 0;
}
}
*position = convertor->bConverted;
return rc;
}
/**
* Compute the remote size. If necessary remove the homogeneous flag
* and redirect the convertor description toward the non-optimized
* datatype representation.
*/
size_t opal_convertor_compute_remote_size(opal_convertor_t *pConvertor)
{
opal_datatype_t *datatype = (opal_datatype_t *) pConvertor->pDesc;
pConvertor->remote_size = pConvertor->local_size;
if (OPAL_UNLIKELY(datatype->bdt_used & pConvertor->master->hetero_mask)) {
pConvertor->flags &= (~CONVERTOR_HOMOGENEOUS);
/* Can we use the optimized description? */
if (pConvertor->flags & OPAL_DATATYPE_OPTIMIZED_RESTRICTED) {
pConvertor->use_desc = &(datatype->desc);
}
if (0 == (pConvertor->flags & CONVERTOR_HAS_REMOTE_SIZE)) {
/* This is for a single datatype, we must update it with the count */
pConvertor->remote_size =
opal_datatype_compute_remote_size(datatype,
pConvertor->master->remote_sizes);
pConvertor->remote_size *= pConvertor->count;
}
}
pConvertor->flags |= CONVERTOR_HAS_REMOTE_SIZE;
return pConvertor->remote_size;
}
/**
* This macro will initialize a convertor based on a previously created
* convertor. The idea is the move outside these function the heavy
* selection of architecture features for the convertors. I consider
* here that the convertor is clean, either never initialized or already
* cleaned.
*/
#define OPAL_CONVERTOR_PREPARE(convertor, datatype, count, pUserBuf) \
{ \
convertor->local_size = count * datatype->size; \
convertor->pBaseBuf = (unsigned char *) pUserBuf; \
convertor->count = count; \
convertor->pDesc = (opal_datatype_t *) datatype; \
convertor->bConverted = 0; \
convertor->use_desc = &(datatype->opt_desc); \
/* If the data is empty we just mark the convertor as \
* completed. With this flag set the pack and unpack functions \
* will not do anything. \
*/ \
if (OPAL_UNLIKELY((0 == count) || (0 == datatype->size))) { \
convertor->flags |= (OPAL_DATATYPE_FLAG_NO_GAPS | CONVERTOR_COMPLETED \
| CONVERTOR_HAS_REMOTE_SIZE); \
convertor->local_size = convertor->remote_size = 0; \
return OPAL_SUCCESS; \
} \
\
/* Grab the datatype part of the flags */ \
convertor->flags &= CONVERTOR_TYPE_MASK; \
convertor->flags |= (CONVERTOR_DATATYPE_MASK & datatype->flags); \
convertor->flags |= (CONVERTOR_NO_OP | CONVERTOR_HOMOGENEOUS); \
\
convertor->remote_size = convertor->local_size; \
if (OPAL_LIKELY(convertor->remoteArch == opal_local_arch)) { \
if (!(convertor->flags & CONVERTOR_WITH_CHECKSUM) \
&& ((convertor->flags & OPAL_DATATYPE_FLAG_NO_GAPS) \
|| ((convertor->flags & OPAL_DATATYPE_FLAG_CONTIGUOUS) && (1 == count)))) { \
return OPAL_SUCCESS; \
} \
} \
\
assert((convertor)->pDesc == (datatype)); \
opal_convertor_compute_remote_size(convertor); \
assert(NULL != convertor->use_desc->desc); \
/* For predefined datatypes (contiguous) do nothing more */ \
/* if checksum is enabled then always continue */ \
if (((convertor->flags & (CONVERTOR_WITH_CHECKSUM | OPAL_DATATYPE_FLAG_NO_GAPS)) \
== OPAL_DATATYPE_FLAG_NO_GAPS) \
&& ((convertor->flags & (CONVERTOR_SEND | CONVERTOR_HOMOGENEOUS)) \
== (CONVERTOR_SEND | CONVERTOR_HOMOGENEOUS))) { \
return OPAL_SUCCESS; \
} \
convertor->flags &= ~CONVERTOR_NO_OP; \
{ \
uint32_t required_stack_length = datatype->loops + 1; \
\
if (required_stack_length > convertor->stack_size) { \
assert(convertor->pStack == convertor->static_stack); \
convertor->stack_size = required_stack_length; \
convertor->pStack = (dt_stack_t *) malloc(sizeof(dt_stack_t) \
* convertor->stack_size); \
} \
} \
opal_convertor_create_stack_at_begining(convertor, opal_datatype_local_sizes); \
}
static void opal_convertor_accelerator_init(opal_convertor_t *convertor, const void *addr)
{
uint64_t flags = 0;
int dev_id;
/* This is needed to handle case where convertor is not fully initialized
* like when trying to do a sendi with convertor on the stack */
convertor->cbmemcpy = &opal_convertor_accelerator_memcpy;
if (opal_accelerator.check_addr(addr, &dev_id, &flags) > 0) {
convertor->flags |= CONVERTOR_ACCELERATOR;
}
if (flags & MCA_ACCELERATOR_FLAGS_UNIFIED_MEMORY) {
convertor->flags |= CONVERTOR_ACCELERATOR_UNIFIED;
}
return;
}
int32_t opal_convertor_prepare_for_recv(opal_convertor_t *convertor,
const struct opal_datatype_t *datatype, size_t count,
const void *pUserBuf)
{
/* Here I should check that the data is not overlapping */
convertor->flags |= CONVERTOR_RECV;
if (!(convertor->flags & CONVERTOR_SKIP_ACCELERATOR_INIT)) {
opal_convertor_accelerator_init(convertor, pUserBuf);
}
assert(!(convertor->flags & CONVERTOR_SEND));
OPAL_CONVERTOR_PREPARE(convertor, datatype, count, pUserBuf);
#if defined(CHECKSUM)
if (OPAL_UNLIKELY(convertor->flags & CONVERTOR_WITH_CHECKSUM)) {
if (OPAL_UNLIKELY(!(convertor->flags & CONVERTOR_HOMOGENEOUS))) {
convertor->fAdvance = opal_unpack_general_checksum;
} else {
if (convertor->pDesc->flags & OPAL_DATATYPE_FLAG_CONTIGUOUS) {
convertor->fAdvance = opal_unpack_homogeneous_contig_checksum;
} else {
convertor->fAdvance = opal_generic_simple_unpack_checksum;
}
}
} else {
#endif /* defined(CHECKSUM) */
if (OPAL_UNLIKELY(!(convertor->flags & CONVERTOR_HOMOGENEOUS))) {
convertor->fAdvance = opal_unpack_general;
} else {
if (convertor->pDesc->flags & OPAL_DATATYPE_FLAG_CONTIGUOUS) {
convertor->fAdvance = opal_unpack_homogeneous_contig;
} else {
convertor->fAdvance = opal_generic_simple_unpack;
}
}
#if defined(CHECKSUM)
}
#endif
return OPAL_SUCCESS;
}
int32_t opal_convertor_prepare_for_send(opal_convertor_t *convertor,
const struct opal_datatype_t *datatype, size_t count,
const void *pUserBuf)
{
convertor->flags |= CONVERTOR_SEND;
if (!(convertor->flags & CONVERTOR_SKIP_ACCELERATOR_INIT)) {
opal_convertor_accelerator_init(convertor, pUserBuf);
}
OPAL_CONVERTOR_PREPARE(convertor, datatype, count, pUserBuf);
#if defined(CHECKSUM)
if (convertor->flags & CONVERTOR_WITH_CHECKSUM) {
if (CONVERTOR_SEND_CONVERSION
== (convertor->flags & (CONVERTOR_SEND_CONVERSION | CONVERTOR_HOMOGENEOUS))) {
convertor->fAdvance = opal_pack_general_checksum;
} else {
if (datatype->flags & OPAL_DATATYPE_FLAG_CONTIGUOUS) {
if (((datatype->ub - datatype->lb) == (ptrdiff_t) datatype->size)
|| (1 >= convertor->count)) {
convertor->fAdvance = opal_pack_homogeneous_contig_checksum;
} else {
convertor->fAdvance = opal_pack_homogeneous_contig_with_gaps_checksum;
}
} else {
convertor->fAdvance = opal_generic_simple_pack_checksum;
}
}
} else {
#endif /* defined(CHECKSUM) */
if (CONVERTOR_SEND_CONVERSION
== (convertor->flags & (CONVERTOR_SEND_CONVERSION | CONVERTOR_HOMOGENEOUS))) {
convertor->fAdvance = opal_pack_general;
} else {
if (datatype->flags & OPAL_DATATYPE_FLAG_CONTIGUOUS) {
if (((datatype->ub - datatype->lb) == (ptrdiff_t) datatype->size)
|| (1 >= convertor->count)) {
convertor->fAdvance = opal_pack_homogeneous_contig;
} else {
convertor->fAdvance = opal_pack_homogeneous_contig_with_gaps;
}
} else {
convertor->fAdvance = opal_generic_simple_pack;
}
}
#if defined(CHECKSUM)
}
#endif
return OPAL_SUCCESS;
}
/*
* These functions can be used in order to create an IDENTICAL copy of one convertor. In this
* context IDENTICAL means that the datatype and count and all other properties of the basic
* convertor get replicated on this new convertor. However, the references to the datatype
* are not increased. This function take special care about the stack. If all the cases the
* stack is created with the correct number of entries but if the copy_stack is true (!= 0)
* then the content of the old stack is copied on the new one. The result will be a convertor
* ready to use starting from the old position. If copy_stack is false then the convertor
* is created with a empty stack (you have to use opal_convertor_set_position before using it).
*/
int opal_convertor_clone(const opal_convertor_t *source, opal_convertor_t *destination,
int32_t copy_stack)
{
destination->remoteArch = source->remoteArch;
destination->flags = source->flags;
destination->pDesc = source->pDesc;
destination->use_desc = source->use_desc;
destination->count = source->count;
destination->pBaseBuf = source->pBaseBuf;
destination->fAdvance = source->fAdvance;
destination->master = source->master;
destination->local_size = source->local_size;
destination->remote_size = source->remote_size;
/* create the stack */
if (OPAL_UNLIKELY(source->stack_size > DT_STATIC_STACK_SIZE)) {
destination->pStack = (dt_stack_t *) malloc(sizeof(dt_stack_t) * source->stack_size);
} else {
destination->pStack = destination->static_stack;
}
destination->stack_size = source->stack_size;
/* initialize the stack */
if (OPAL_LIKELY(0 == copy_stack)) {
destination->bConverted = -1;
destination->stack_pos = -1;
} else {
memcpy(destination->pStack, source->pStack, sizeof(dt_stack_t) * (source->stack_pos + 1));
destination->bConverted = source->bConverted;
destination->stack_pos = source->stack_pos;
}
destination->cbmemcpy = source->cbmemcpy;
return OPAL_SUCCESS;
}
void opal_convertor_dump(opal_convertor_t *convertor)
{
opal_output(0,
"Convertor %p count %" PRIsize_t " stack position %u bConverted %" PRIsize_t "\n"
"\tlocal_size %" PRIsize_t " remote_size %" PRIsize_t
" flags %X stack_size %u pending_length %" PRIsize_t "\n"
"\tremote_arch %u local_arch %u\n",
(void *) convertor, convertor->count, convertor->stack_pos, convertor->bConverted,
convertor->local_size, convertor->remote_size, convertor->flags,
convertor->stack_size, convertor->partial_length, convertor->remoteArch,
opal_local_arch);
if (convertor->flags & CONVERTOR_RECV) {
opal_output(0, "unpack ");
}
if (convertor->flags & CONVERTOR_SEND) {
opal_output(0, "pack ");
}
if (convertor->flags & CONVERTOR_SEND_CONVERSION) {
opal_output(0, "conversion ");
}
if (convertor->flags & CONVERTOR_HOMOGENEOUS) {
opal_output(0, "homogeneous ");
} else {
opal_output(0, "heterogeneous ");
}
if (convertor->flags & CONVERTOR_NO_OP) {
opal_output(0, "no_op ");
}
if (convertor->flags & CONVERTOR_WITH_CHECKSUM) {
opal_output(0, "checksum ");
}
if (convertor->flags & CONVERTOR_ACCELERATOR) {
opal_output(0, "ACCELERATOR ");
}
if (convertor->flags & CONVERTOR_ACCELERATOR_ASYNC) {
opal_output(0, "ACCELERATOR Async ");
}
if (convertor->flags & CONVERTOR_COMPLETED) {
opal_output(0, "COMPLETED ");
}
opal_datatype_dump(convertor->pDesc);
if (!((0 == convertor->stack_pos)
&& ((size_t) convertor->pStack[convertor->stack_pos].index
> convertor->pDesc->desc.length))) {
/* only if the convertor is completely initialized */
opal_output(0, "Actual stack representation\n");
opal_datatype_dump_stack(convertor->pStack, convertor->stack_pos,
convertor->pDesc->desc.desc, convertor->pDesc->name);
}
}
void opal_datatype_dump_stack(const dt_stack_t *pStack, int stack_pos,
const union dt_elem_desc *pDesc, const char *name)
{
opal_output(0, "\nStack %p stack_pos %d name %s\n", (void *) pStack, stack_pos, name);
for (; stack_pos >= 0; stack_pos--) {
opal_output(0, "%d: pos %d count %" PRIsize_t " disp %ld ", stack_pos,
pStack[stack_pos].index, pStack[stack_pos].count, pStack[stack_pos].disp);
if (pStack->index != -1) {
opal_output(0, "\t[desc count %lu disp %ld extent %ld]\n",
(unsigned long) pDesc[pStack[stack_pos].index].elem.count,
(long) pDesc[pStack[stack_pos].index].elem.disp,
(long) pDesc[pStack[stack_pos].index].elem.extent);
} else {
opal_output(0, "\n");
}
}
opal_output(0, "\n");
}
|