File: opal_datatype_unpack.c

package info (click to toggle)
openmpi 5.0.8-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 201,684 kB
  • sloc: ansic: 613,078; makefile: 42,353; sh: 11,194; javascript: 9,244; f90: 7,052; java: 6,404; perl: 5,179; python: 1,859; lex: 740; fortran: 61; cpp: 20; tcl: 12
file content (687 lines) | stat: -rw-r--r-- 35,014 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
 * Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
 *                         University Research and Technology
 *                         Corporation.  All rights reserved.
 * Copyright (c) 2004-2019 The University of Tennessee and The University
 *                         of Tennessee Research Foundation.  All rights
 *                         reserved.
 * Copyright (c) 2004-2006 High Performance Computing Center Stuttgart,
 *                         University of Stuttgart.  All rights reserved.
 * Copyright (c) 2004-2006 The Regents of the University of California.
 *                         All rights reserved.
 * Copyright (c) 2008-2009 Oak Ridge National Labs.  All rights reserved.
 * Copyright (c) 2011      NVIDIA Corporation.  All rights reserved.
 * Copyright (c) 2013      Cisco Systems, Inc.  All rights reserved.
 * Copyright (c) 2017-2018 Research Organization for Information Science
 *                         and Technology (RIST).  All rights reserved.
 * Copyright (c) 2022      IBM Corporation.  All rights reserved.
 * Copyright (c) 2023      Jeffrey M. Squyres.  All rights reserved.
 * $COPYRIGHT$
 *
 * Additional copyrights may follow
 *
 * $HEADER$
 */

#include "opal_config.h"

#include <stddef.h>
#include <stdio.h>

#include "opal/datatype/opal_convertor_internal.h"
#include "opal/datatype/opal_datatype_internal.h"
#include "opal/mca/accelerator/accelerator.h"
#include "opal/mca/accelerator/base/base.h"

#if OPAL_ENABLE_DEBUG
#    include "opal/util/output.h"

#    define DO_DEBUG(INST)           \
        if (opal_ddt_unpack_debug) { \
            INST                     \
        }
#else
#    define DO_DEBUG(INST)
#endif /* OPAL_ENABLE_DEBUG */

#include "opal/datatype/opal_datatype_checksum.h"
#include "opal/datatype/opal_datatype_prototypes.h"
#include "opal/datatype/opal_datatype_unpack.h"

#if defined(CHECKSUM)
#    define opal_unpack_general_function            opal_unpack_general_checksum
#    define opal_unpack_homogeneous_contig_function opal_unpack_homogeneous_contig_checksum
#    define opal_generic_simple_unpack_function     opal_generic_simple_unpack_checksum
#else
#    define opal_unpack_general_function            opal_unpack_general
#    define opal_unpack_homogeneous_contig_function opal_unpack_homogeneous_contig
#    define opal_generic_simple_unpack_function     opal_generic_simple_unpack
#endif /* defined(CHECKSUM) */

/**
 * This function will be used to unpack all datatypes that have the contiguous flag set.
 * Several types of datatypes match this criterion, not only the contiguous one, but
 * the ones that have gaps in the beginning and/or at the end but where the data to
 * be unpacked is contiguous. However, this function only work for homogeneous cases
 * and the datatype that are contiguous and where the extent is equal to the size are
 * taken in account directly in the opal_convertor_unpack function (in convertor.c) for
 * the homogeneous case.
 */
int32_t opal_unpack_homogeneous_contig_function(opal_convertor_t *pConv, struct iovec *iov,
                                                uint32_t *out_size, size_t *max_data)
{
    const opal_datatype_t *pData = pConv->pDesc;
    unsigned char *user_memory, *packed_buffer;
    uint32_t iov_idx;
    uint32_t __opal_attribute_unused__ i;
    size_t remaining, initial_bytes_converted = pConv->bConverted;
    dt_stack_t *stack = pConv->pStack;
    ptrdiff_t extent = pData->ub - pData->lb;

    DO_DEBUG(opal_output(0, "unpack_homogeneous_contig( pBaseBuf %p, iov count %d )\n",
                         (void *) pConv->pBaseBuf, *out_size););
    if (stack[1].type != opal_datatype_uint1.id) {
        stack[1].count *= opal_datatype_basicDatatypes[stack[1].type]->size;
        stack[1].type = opal_datatype_uint1.id;
    }

    if ((ptrdiff_t) pData->size == extent) {
        for (iov_idx = 0; iov_idx < (*out_size); iov_idx++) {
            remaining = pConv->local_size - pConv->bConverted;
            if (0 == remaining) {
                break; /* we're done this time */
            }
            if (remaining > iov[iov_idx].iov_len) {
                remaining = iov[iov_idx].iov_len;
            }

            packed_buffer = (unsigned char *) iov[iov_idx].iov_base;
            user_memory = pConv->pBaseBuf + pData->true_lb + pConv->bConverted;

            /* contiguous data or basic datatype with count */
            OPAL_DATATYPE_SAFEGUARD_POINTER(user_memory, remaining, pConv->pBaseBuf, pData,
                                            pConv->count);
            DO_DEBUG(opal_output(0, "unpack contig [%d] dest %p src %p length %" PRIsize_t "\n",
                                 iov_idx, (void *) user_memory, (void *) packed_buffer,
                                 remaining););
            MEMCPY_CSUM(user_memory, packed_buffer, remaining, pConv);
            pConv->bConverted += remaining; /* how much will get unpacked this time */
        }
    } else {
        for (iov_idx = 0; iov_idx < (*out_size); iov_idx++) {
            remaining = pConv->local_size - pConv->bConverted;
            if (0 == remaining) {
                break; /* we're done this time */
            }
            if (remaining > iov[iov_idx].iov_len) {
                remaining = iov[iov_idx].iov_len;
            }

            packed_buffer = (unsigned char *) iov[iov_idx].iov_base;
            user_memory = pConv->pBaseBuf + pData->true_lb + stack[0].disp + stack[1].disp;
            pConv->bConverted += remaining; /* how much will get unpacked this time */

            for (i = 0; stack[1].count <= remaining; i++) { /* partial or full data */
                OPAL_DATATYPE_SAFEGUARD_POINTER(user_memory, stack[1].count, pConv->pBaseBuf, pData,
                                                pConv->count);
                DO_DEBUG(opal_output(0,
                                     "unpack gaps [%d] dest %p src %p length %" PRIsize_t " [%d]\n",
                                     iov_idx, (void *) user_memory, (void *) packed_buffer,
                                     stack[1].count, i););
                MEMCPY_CSUM(user_memory, packed_buffer, stack[1].count, pConv);

                packed_buffer += stack[1].count;
                remaining -= stack[1].count;

                stack[0].count--;
                stack[0].disp += extent;
                stack[1].count = pData->size;
                stack[1].disp = 0;

                user_memory = pConv->pBaseBuf + pData->true_lb + stack[0].disp;
            }

            /* Copy the last bits */
            if (0 != remaining) {
                OPAL_DATATYPE_SAFEGUARD_POINTER(user_memory, remaining, pConv->pBaseBuf, pData,
                                                pConv->count);
                DO_DEBUG(
                    opal_output(0,
                                "unpack gaps [%d] dest %p src %p length %" PRIsize_t " [epilog]\n",
                                iov_idx, (void *) user_memory, (void *) packed_buffer, remaining););
                MEMCPY_CSUM(user_memory, packed_buffer, remaining, pConv);
                stack[1].count -= remaining;
                stack[1].disp += remaining; /* keep the += in case we are copying less that the
                                               datatype size */
                assert(stack[1].count);
            }
        }
    }
    *out_size = iov_idx; /* we only reach this line after the for loop successfully complete */
    *max_data = pConv->bConverted - initial_bytes_converted;
    if (pConv->bConverted == pConv->local_size) {
        pConv->flags |= CONVERTOR_COMPLETED;
    }
    return !!(pConv->flags & CONVERTOR_COMPLETED); /* done or not */
}

/**
 * This function handle partial types. Depending on the send operation it might happens
 * that we receive only a partial type (always predefined type). In fact the outcome is
 * that the unpack has to be done in 2 steps. As there is no way to know if the other
 * part of the datatype is already received, we need to use a trick to handle this special
 * case. The trick is to fill the missing part with some well known value, unpack the data
 * as if it was completely received, and then move into the user memory only the bytes
 * that don't match the well known value. This approach work as long as there is no need
 * for more than structural changes. They will not work for cases where we will have to
 * change the content of the data (as in all conversions that require changing the size
 * of the exponent or mantissa).
 */
static inline void
opal_unpack_partial_predefined(opal_convertor_t *pConvertor, const dt_elem_desc_t *pElem,
                               size_t *COUNT, unsigned char **packed,
                               unsigned char **memory, size_t *SPACE)
{
    char unused_byte = 0x7F, saved_data[16];
    unsigned char temporary[16], *temporary_buffer = temporary;
    unsigned char *user_data = *memory + pElem->elem.disp;
    size_t data_length = opal_datatype_basicDatatypes[pElem->elem.common.type]->size;
    unsigned char *partial_data = *packed;
    ptrdiff_t start_position = pConvertor->partial_length;
    size_t length = data_length - start_position;
    size_t count_desc = 1;
    dt_elem_desc_t single_elem = { .elem = { .common = pElem->elem.common, .count = 1, .blocklen = 1,
                                   .extent = data_length,  /* advance by a full data element */
                                   .disp = 0  /* right where the pointer is */ } };
    if( *SPACE < length ) {
        length = *SPACE;
    }

    DO_DEBUG( opal_output( 0, "unpack partial data start %lu end %lu data_length %lu user %p\n"
                           "\tbConverted %lu total_length %lu count %ld\n",
                           (unsigned long)start_position, (unsigned long)start_position + length,
                           (unsigned long)data_length, (void*)*memory,
                           (unsigned long)pConvertor->bConverted,
                           (unsigned long)pConvertor->local_size, pConvertor->count ); );
    COMPUTE_CSUM( partial_data, length, pConvertor );

    /* Find a byte value that is not used in the partial buffer. We use it as a marker
     * to identify what has not been modified by the unpack call. */
 find_unused_byte:
    for (size_t i = 0; i < length; i++ ) {
        if( unused_byte == partial_data[i] ) {
            unused_byte--;
            goto find_unused_byte;
        }
    }

    /* Prepare an full element of the predefined type, by populating an entire type
     * with the unused byte and then put the partial data at the right position. */
    memset( temporary, unused_byte, data_length );
    MEMCPY( temporary + start_position, partial_data, length );

    /* Save the original content of the user memory */
    /* In the case where the data is being unpacked from device memory, need to
     * use the special host to device memory copy. */
    pConvertor->cbmemcpy(saved_data, user_data, data_length, pConvertor );

    /* Then unpack the data into the user memory */
    UNPACK_PREDEFINED_DATATYPE(pConvertor, &single_elem, count_desc, temporary_buffer, user_data,
                               data_length);

    /* reload the length and user buffer as they have been updated by the macro */
    data_length = opal_datatype_basicDatatypes[pElem->elem.common.type]->size;
    user_data = *memory + pElem->elem.disp;

    /* Rebuild the data by pulling back the unmodified bytes from the original
     * content in the user memory. */
    /* Need to copy the modified user_data again so we can see which
     * bytes need to be converted back to their original values. */
    if (0 != strcmp(opal_accelerator_base_selected_component.base_version.mca_component_name, "null")) {
        char resaved_data[16];
        pConvertor->cbmemcpy(resaved_data, user_data, data_length, pConvertor);
        for (size_t i = 0; i < data_length; i++) {
            if (unused_byte == resaved_data[i])
                pConvertor->cbmemcpy(&user_data[i], &saved_data[i], 1, pConvertor);
        }
    } else {
        for (size_t i = 0; i < data_length; i++) {
            if (unused_byte == user_data[i]) {
                user_data[i] = saved_data[i];
            }
        }
    }

    pConvertor->partial_length = (pConvertor->partial_length + length) % data_length;
    *SPACE  -= length;
    *packed += length;
    if (0 == pConvertor->partial_length) {
        (*COUNT)--;  /* we have enough to complete one full predefined type */
        *memory += data_length;
        if (0 == (*COUNT % pElem->elem.blocklen)) {
            *memory += pElem->elem.extent - (pElem->elem.blocklen * data_length);
        }
    }
}

/* The pack/unpack functions need a cleanup. I have to create a proper interface to access
 * all basic functionalities, hence using them as basic blocks for all conversion functions.
 *
 * But first let's make some global assumptions:
 * - a datatype (with the flag DT_DATA set) will have the contiguous flags set if and only if
 *   the data is really contiguous (extent equal with size)
 * - for the OPAL_DATATYPE_LOOP type the DT_CONTIGUOUS flag set means that the content of the loop
 * is contiguous but with a gap in the beginning or at the end.
 * - the DT_CONTIGUOUS flag for the type OPAL_DATATYPE_END_LOOP is meaningless.
 */
int32_t opal_generic_simple_unpack_function(opal_convertor_t *pConvertor, struct iovec *iov,
                                            uint32_t *out_size, size_t *max_data)
{
    dt_stack_t *pStack;        /* pointer to the position on the stack */
    uint32_t pos_desc;         /* actual position in the description of the derived datatype */
    size_t count_desc;         /* the number of items already done in the actual pos_desc */
    size_t total_unpacked = 0; /* total size unpacked this time */
    dt_elem_desc_t *description;
    dt_elem_desc_t *pElem;
    const opal_datatype_t *pData = pConvertor->pDesc;
    unsigned char *conv_ptr, *iov_ptr;
    size_t iov_len_local;
    uint32_t iov_count;

    DO_DEBUG( opal_output( 0, "opal_convertor_generic_simple_unpack( %p, iov[%u] = {%p, %lu} )\n",
                           (void*)pConvertor, *out_size, (void*)iov[0].iov_base, (unsigned long)iov[0].iov_len ); );

    description = pConvertor->use_desc->desc;

    /* For the first step we have to add both displacement to the source. After in the
     * main while loop we will set back the source_base to the correct value. This is
     * due to the fact that the convertor can stop in the middle of a data with a count
     */
    pStack = pConvertor->pStack + pConvertor->stack_pos;
    pos_desc = pStack->index;
    conv_ptr = pConvertor->pBaseBuf + pStack->disp;
    count_desc = pStack->count;
    pStack--;
    pConvertor->stack_pos--;
    pElem = &(description[pos_desc]);

    DO_DEBUG(opal_output(0,
                         "unpack start pos_desc %d count_desc %" PRIsize_t " disp %ld\n"
                         "stack_pos %d pos_desc %d count_desc %" PRIsize_t " disp %ld\n",
                         pos_desc, count_desc, (long) (conv_ptr - pConvertor->pBaseBuf),
                         pConvertor->stack_pos, pStack->index, pStack->count,
                         (long) (pStack->disp)););

    for (iov_count = 0; iov_count < (*out_size); iov_count++) {
        iov_ptr = (unsigned char *) iov[iov_count].iov_base;
        iov_len_local = iov[iov_count].iov_len;

        /* Deal with all types of partial predefined datatype unpacking, including when
         * unpacking a partial predefined element and when unpacking a part smaller than
         * the blocklen.
         */
        if (pElem->elem.common.flags & OPAL_DATATYPE_FLAG_DATA) {
            if (0 != pConvertor->partial_length) {  /* partial predefined element */
                assert( pElem->elem.common.flags & OPAL_DATATYPE_FLAG_DATA );
                opal_unpack_partial_predefined( pConvertor, pElem, &count_desc,
                                                &iov_ptr, &conv_ptr, &iov_len_local );
                if (0 == count_desc) {  /* the end of the vector ? */
                    assert( 0 == pConvertor->partial_length );
                    conv_ptr = pConvertor->pBaseBuf + pStack->disp;
                    pos_desc++; /* advance to the next data */
                    UPDATE_INTERNAL_COUNTERS(description, pos_desc, pElem, count_desc);
                    goto next_vector;
                }
                if( 0 == iov_len_local )
                    goto complete_loop;
            }
            if (((size_t) pElem->elem.count * pElem->elem.blocklen) != count_desc) {
                /* we have a partial (less than blocklen) basic datatype */
                int rc = UNPACK_PARTIAL_BLOCKLEN(pConvertor, pElem, count_desc, iov_ptr, conv_ptr,
                                                 iov_len_local);
                if (0 == rc) { /* not done */
                    goto complete_loop;
                }
                if (0 == count_desc) {
                    conv_ptr = pConvertor->pBaseBuf + pStack->disp;
                    pos_desc++; /* advance to the next data */
                    UPDATE_INTERNAL_COUNTERS(description, pos_desc, pElem, count_desc);
                }
            }
        }

        while (1) {
          next_vector:
            while (pElem->elem.common.flags & OPAL_DATATYPE_FLAG_DATA) {
                /* we have a basic datatype (working on full blocks) */
                UNPACK_PREDEFINED_DATATYPE(pConvertor, pElem, count_desc, iov_ptr, conv_ptr,
                                           iov_len_local);
                if (0 != count_desc) { /* completed? */
                    goto complete_loop;
                }
                conv_ptr = pConvertor->pBaseBuf + pStack->disp;
                pos_desc++; /* advance to the next data */
                UPDATE_INTERNAL_COUNTERS(description, pos_desc, pElem, count_desc);
            }
            if (OPAL_DATATYPE_END_LOOP == pElem->elem.common.type) { /* end of the current loop */
                DO_DEBUG(opal_output(0,
                                     "unpack end_loop count %" PRIsize_t
                                     " stack_pos %d pos_desc %d disp %ld space %lu\n",
                                     pStack->count, pConvertor->stack_pos, pos_desc, pStack->disp,
                                     (unsigned long) iov_len_local););
                if (--(pStack->count) == 0) { /* end of loop */
                    if (0 == pConvertor->stack_pos) {
                        /* we're done. Force the exit of the main for loop (around iovec) */
                        *out_size = iov_count;
                        goto complete_loop;
                    }
                    pConvertor->stack_pos--;
                    pStack--;
                    pos_desc++;
                } else {
                    pos_desc = pStack->index + 1;
                    if (pStack->index == -1) {
                        pStack->disp += (pData->ub - pData->lb);
                    } else {
                        assert(OPAL_DATATYPE_LOOP == description[pStack->index].loop.common.type);
                        pStack->disp += description[pStack->index].loop.extent;
                    }
                }
                conv_ptr = pConvertor->pBaseBuf + pStack->disp;
                UPDATE_INTERNAL_COUNTERS(description, pos_desc, pElem, count_desc);
                DO_DEBUG(opal_output(0,
                                     "unpack new_loop count %" PRIsize_t
                                     " stack_pos %d pos_desc %d disp %ld space %lu\n",
                                     pStack->count, pConvertor->stack_pos, pos_desc, pStack->disp,
                                     (unsigned long) iov_len_local););
            }
            if (OPAL_DATATYPE_LOOP == pElem->elem.common.type) {
                ptrdiff_t local_disp = (ptrdiff_t) conv_ptr;
                if (pElem->loop.common.flags & OPAL_DATATYPE_FLAG_CONTIGUOUS) {
                    UNPACK_CONTIGUOUS_LOOP(pConvertor, pElem, count_desc, iov_ptr, conv_ptr,
                                           iov_len_local);
                    if (0 == count_desc) { /* completed */
                        pos_desc += pElem->loop.items + 1;
                        goto update_loop_description;
                    }
                    /* Save the stack with the correct last_count value. */
                }
                local_disp = (ptrdiff_t) conv_ptr - local_disp;
                PUSH_STACK(pStack, pConvertor->stack_pos, pos_desc, OPAL_DATATYPE_LOOP, count_desc,
                           pStack->disp + local_disp);
                pos_desc++;
            update_loop_description: /* update the current state */
                conv_ptr = pConvertor->pBaseBuf + pStack->disp;
                UPDATE_INTERNAL_COUNTERS(description, pos_desc, pElem, count_desc);
                DDT_DUMP_STACK(pConvertor->pStack, pConvertor->stack_pos, pElem, "advance loop");
            }
        }
    complete_loop:
        assert( pElem->elem.common.type < OPAL_DATATYPE_MAX_PREDEFINED );
        if( (pElem->elem.common.flags & OPAL_DATATYPE_FLAG_DATA) && (0 != iov_len_local) ) {
            unsigned char* temp = conv_ptr;
            /* We have some partial data here. Let's copy it into the convertor
             * and keep it hot until the next round.
             */
            assert( iov_len_local < opal_datatype_basicDatatypes[pElem->elem.common.type]->size );
            opal_unpack_partial_predefined(pConvertor, pElem, &count_desc, &iov_ptr, &temp, &iov_len_local);
        }

        iov[iov_count].iov_len -= iov_len_local; /* update the amount of valid data */
        total_unpacked += iov[iov_count].iov_len;
    }
    *max_data = total_unpacked;
    pConvertor->bConverted += total_unpacked; /* update the already converted bytes */
    *out_size = iov_count;
    if (pConvertor->bConverted == pConvertor->local_size) {
        pConvertor->flags |= CONVERTOR_COMPLETED;
        return 1;
    }
    /* Save the global position for the next round */
    PUSH_STACK(pStack, pConvertor->stack_pos, pos_desc, pElem->elem.common.type, count_desc,
               conv_ptr - pConvertor->pBaseBuf);
    DO_DEBUG(opal_output(0,
                         "unpack save stack stack_pos %d pos_desc %d count_desc %" PRIsize_t
                         " disp %ld\n",
                         pConvertor->stack_pos, pStack->index, pStack->count,
                         (long) pStack->disp););
    return 0;
}

/*
 *  Remember that the first item in the stack (ie. position 0) is the number
 * of times the datatype is involved in the operation (ie. the count argument
 * in the MPI_ call).
 */
/* Convert data from multiple input buffers (as received from the network layer)
 * to a contiguous output buffer with a predefined size.
 * return OPAL_SUCCESS if everything went OK and if there is still room before the complete
 *          conversion of the data (need additional call with others input buffers )
 *        1 if everything went fine and the data was completely converted
 *       -1 something wrong occurs.
 */
static inline void
unpack_predefined_heterogeneous(opal_convertor_t *CONVERTOR,
                                const dt_elem_desc_t *ELEM, size_t *COUNT,
                                unsigned char **memory,
                                unsigned char **packed, size_t *SPACE)
{
    const opal_convertor_master_t *master = (CONVERTOR)->master;
    const ddt_elem_desc_t *_elem = &((ELEM)->elem);
    size_t cando_count = *(COUNT), do_now_bytes;
    size_t local_elem_size = opal_datatype_basicDatatypes[_elem->common.type]->size;
    size_t remote_elem_size = master->remote_sizes[_elem->common.type];
    size_t blocklen_bytes = remote_elem_size;
    unsigned char *_memory = (*memory) + _elem->disp;
    unsigned char *_packed = *packed;
    ptrdiff_t advance = 0;

    assert(0 == (cando_count % _elem->blocklen)); /* no partials here */
    assert(*(COUNT) <= ((size_t) _elem->count * _elem->blocklen));

    if ((remote_elem_size * cando_count) > *(SPACE))
        cando_count = (*SPACE) / blocklen_bytes;

    /* preemptively update the number of COUNT we will return. */
    *(COUNT) -= cando_count;

    if (_elem->blocklen == 1) {
        master->pFunctions[_elem->common.type](CONVERTOR, cando_count,
                                               _packed, *SPACE, remote_elem_size,
                                               _memory, *SPACE, _elem->extent,
                                               &advance);
        _memory += cando_count * _elem->extent;
        _packed += cando_count * remote_elem_size;
        goto update_and_return;
    }

    if ((1 < _elem->count) && (_elem->blocklen <= cando_count)) {
        blocklen_bytes = remote_elem_size * _elem->blocklen;

        do { /* Do as many full blocklen as possible */
            OPAL_DATATYPE_SAFEGUARD_POINTER(_memory, blocklen_bytes, (CONVERTOR)->pBaseBuf,
                                            (CONVERTOR)->pDesc, (CONVERTOR)->count);
            DO_DEBUG(opal_output(0, "pack 2. memcpy( %p, %p, %lu ) => space %lu\n",
                                 (void *) _packed, (void *) _memory, (unsigned long) blocklen_bytes,
                                 (unsigned long) (*(SPACE) - (_packed - *(packed)))););
            master->pFunctions[_elem->common.type](CONVERTOR, _elem->blocklen,
                                                   _packed, *SPACE, remote_elem_size,
                                                   _memory, *SPACE, local_elem_size,
                                                   &advance);
            _packed += blocklen_bytes;
            _memory += _elem->extent;
            cando_count -= _elem->blocklen;
        } while (_elem->blocklen <= cando_count);
    }

    /**
     * As an epilog do anything left from the last blocklen.
     */
    if (0 != cando_count) {
        assert((cando_count < _elem->blocklen)
               || ((1 == _elem->count) && (cando_count <= _elem->blocklen)));
        do_now_bytes = cando_count * remote_elem_size;
        OPAL_DATATYPE_SAFEGUARD_POINTER(_memory, do_now_bytes, (CONVERTOR)->pBaseBuf,
                                        (CONVERTOR)->pDesc, (CONVERTOR)->count);
        DO_DEBUG(opal_output(0, "pack 3. memcpy( %p, %p, %lu ) => space %lu [epilog]\n",
                             (void *) _packed, (void *) _memory, (unsigned long) do_now_bytes,
                             (unsigned long) (*(SPACE) - (_packed - *(packed)))););
        master->pFunctions[_elem->common.type](CONVERTOR, cando_count,
                                               _packed, *SPACE, remote_elem_size,
                                               _memory, *SPACE, local_elem_size,
                                               &advance);
        _memory += cando_count * local_elem_size;
        _packed += do_now_bytes;
    }

update_and_return:
    *(memory) = _memory - _elem->disp;
    *(SPACE) -= (_packed - *packed);
    *(packed) = _packed;
}

int32_t opal_unpack_general_function(opal_convertor_t *pConvertor, struct iovec *iov,
                                     uint32_t *out_size, size_t *max_data)
{
    dt_stack_t *pStack; /* pointer to the position on the stack */
    uint32_t pos_desc;  /* actual position in the description of the derived datatype */
    size_t count_desc;  /* the number of items already done in the actual pos_desc */
    size_t total_unpacked = 0;                    /* total size unpacked this time */
    dt_elem_desc_t *description;
    dt_elem_desc_t *pElem;
    const opal_datatype_t *pData = pConvertor->pDesc;
    unsigned char *conv_ptr, *iov_ptr;
    uint32_t iov_count;
    size_t iov_len_local;

    DO_DEBUG(opal_output(0, "opal_convertor_general_unpack( %p, {%p, %lu}, %d )\n",
                         (void *) pConvertor, (void *) iov[0].iov_base,
                         (unsigned long) iov[0].iov_len, *out_size););

    description = pConvertor->use_desc->desc;

    /* For the first step we have to add both displacement to the source. After in the
     * main while loop we will set back the source_base to the correct value. This is
     * due to the fact that the convertor can stop in the middle of a data with a count
     */
    pStack = pConvertor->pStack + pConvertor->stack_pos;
    pos_desc = pStack->index;
    conv_ptr = pConvertor->pBaseBuf + pStack->disp;
    count_desc = pStack->count;
    pStack--;
    pConvertor->stack_pos--;
    pElem = &(description[pos_desc]);

    DO_DEBUG(opal_output(0,
                         "unpack start pos_desc %d count_desc %" PRIsize_t " disp %ld\n"
                         "stack_pos %d pos_desc %d count_desc %" PRIsize_t " disp %ld\n",
                         pos_desc, count_desc, (long) (conv_ptr - pConvertor->pBaseBuf),
                         pConvertor->stack_pos, pStack->index, pStack->count,
                         (long) (pStack->disp)););

    for (iov_count = 0; iov_count < (*out_size); iov_count++) {
        iov_ptr = (unsigned char *) iov[iov_count].iov_base;
        iov_len_local = iov[iov_count].iov_len;
        assert(0 == pConvertor->partial_length);
        while (1) {
            while (pElem->elem.common.flags & OPAL_DATATYPE_FLAG_DATA) {
                /* now here we have a basic datatype */
                OPAL_DATATYPE_SAFEGUARD_POINTER(conv_ptr + pElem->elem.disp, pData->size,
                                                pConvertor->pBaseBuf, pData, pConvertor->count);
                DO_DEBUG(opal_output(0,
                                     "unpack (%p, %ld) -> (%p:%ld, %" PRIsize_t ", %ld) type %s\n",
                                     (void *) iov_ptr, iov_len_local, (void *) pConvertor->pBaseBuf,
                                     conv_ptr + pElem->elem.disp - pConvertor->pBaseBuf, count_desc,
                                     description[pos_desc].elem.extent,
                                     opal_datatype_basicDatatypes[description[pos_desc].elem.common.type]->name););
                unpack_predefined_heterogeneous(pConvertor, pElem, &count_desc, &conv_ptr, &iov_ptr,
                                                &iov_len_local);
                if (0 == count_desc) {    /* completed */
                    conv_ptr = pConvertor->pBaseBuf + pStack->disp;
                    pos_desc++; /* advance to the next data */
                    UPDATE_INTERNAL_COUNTERS(description, pos_desc, pElem, count_desc);
                    if (0 == iov_len_local) {
                        goto complete_loop; /* escape if we're done */
                    }
                    continue;
                }
                assert(pElem->elem.common.type < OPAL_DATATYPE_MAX_PREDEFINED);
                assert(0 == iov_len_local);
                if (0 != iov_len_local) {
                    unsigned char *temp = conv_ptr;
                    /* We have some partial data here. Let's copy it into the convertor
                     * and keep it hot until the next round.
                     */
                    assert(iov_len_local < opal_datatype_basicDatatypes[pElem->elem.common.type]->size);
                    opal_unpack_partial_predefined(pConvertor, pElem, &count_desc, &iov_ptr,
                                                   &temp, &iov_len_local);
                    assert( 0 == iov_len_local );
                }
                goto complete_loop;
            }
            if (OPAL_DATATYPE_END_LOOP == pElem->elem.common.type) { /* end of the current loop */
                DO_DEBUG(opal_output(0,
                                     "unpack end_loop count %" PRIsize_t
                                     " stack_pos %d pos_desc %d disp %ld space %lu\n",
                                     pStack->count, pConvertor->stack_pos, pos_desc, pStack->disp,
                                     (unsigned long) iov_len_local););
                if (--(pStack->count) == 0) { /* end of loop */
                    if (0 == pConvertor->stack_pos) {
                        /* we're done. Force the exit of the main for loop (around iovec) */
                        *out_size = iov_count;
                        goto complete_loop;
                    }
                    pConvertor->stack_pos--;
                    pStack--;
                    pos_desc++;
                } else {
                    pos_desc = pStack->index + 1;
                    if (pStack->index == -1) {
                        pStack->disp += (pData->ub - pData->lb);
                    } else {
                        assert(OPAL_DATATYPE_LOOP == description[pStack->index].loop.common.type);
                        pStack->disp += description[pStack->index].loop.extent;
                    }
                }
                conv_ptr = pConvertor->pBaseBuf + pStack->disp;
                UPDATE_INTERNAL_COUNTERS(description, pos_desc, pElem, count_desc);
                DO_DEBUG(opal_output(0,
                                     "unpack new_loop count %" PRIsize_t
                                     " stack_pos %d pos_desc %d disp %ld space %lu\n",
                                     pStack->count, pConvertor->stack_pos, pos_desc, pStack->disp,
                                     (unsigned long) iov_len_local););
            }
            if (OPAL_DATATYPE_LOOP == pElem->elem.common.type) {
                PUSH_STACK(pStack, pConvertor->stack_pos, pos_desc, OPAL_DATATYPE_LOOP, count_desc,
                           pStack->disp);
                pos_desc++;
                conv_ptr = pConvertor->pBaseBuf + pStack->disp;
                UPDATE_INTERNAL_COUNTERS(description, pos_desc, pElem, count_desc);
                DDT_DUMP_STACK(pConvertor->pStack, pConvertor->stack_pos, pElem, "advance loop");
                continue;
            }
        }
    complete_loop:
        iov[iov_count].iov_len -= iov_len_local; /* update the amount of valid data */
        total_unpacked += iov[iov_count].iov_len;
    }
    *max_data = total_unpacked;
    pConvertor->bConverted += total_unpacked; /* update the already converted bytes */
    *out_size = iov_count;
    size_t expected_packed_size;
    opal_convertor_get_packed_size(pConvertor, &expected_packed_size);
    if (pConvertor->bConverted == expected_packed_size) {
        pConvertor->flags |= CONVERTOR_COMPLETED;
        return 1;
    }
    /* Save the global position for the next round */
    PUSH_STACK(pStack, pConvertor->stack_pos, pos_desc, pElem->elem.common.type, count_desc,
               conv_ptr - pConvertor->pBaseBuf);
    DO_DEBUG(opal_output(0,
                         "unpack save stack stack_pos %d pos_desc %d count_desc %" PRIsize_t
                         " disp %ld\n",
                         pConvertor->stack_pos, pStack->index, pStack->count,
                         (long) pStack->disp););
    return 0;
}