1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2024 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2009 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2006 Voltaire. All rights reserved.
* Copyright (c) 2007 Mellanox Technologies. All rights reserved.
* Copyright (c) 2010 IBM Corporation. All rights reserved.
* Copyright (c) 2012-2015 NVIDIA Corporation. All rights reserved.
* Copyright (c) 2015 Los Alamos National Security, LLC. All rights
* reserved.
*
* Copyright (c) 2022 Amazon.com, Inc. or its affiliates. All Rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/**
* @file:
*
* This file implements a simple memory pool that is used by the GPU
* buffer on the sending side. It just gets a memory handle and event
* handle that can be sent to the remote side which can then use the
* handles to get access to the memory and the event to determine when
* it can start accessing the memory. There is no caching of the
* memory handles as getting new ones is fast. The event handles are
* cached by the cuda_common code.
*/
#include "opal_config.h"
#include "opal/mca/rcache/base/base.h"
#include "opal/mca/rcache/gpusm/rcache_gpusm.h"
#include "opal/include/opal/opal_cuda.h"
#include <cuda.h>
/**
* Called when the registration free list is created. An event is created
* for each entry.
*/
static void mca_rcache_gpusm_registration_constructor(mca_rcache_gpusm_registration_t *item)
{
uintptr_t *event = &item->event;
void *handle = (void *) &item->evtHandle;
CUresult result;
result = cuEventCreate((CUevent *) event,
CU_EVENT_INTERPROCESS | CU_EVENT_DISABLE_TIMING);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_output(0, "cuEventCreate failed\n");
}
result = cuIpcGetEventHandle((CUipcEventHandle *) handle, (CUevent) *event);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_output(0, "cuIpcGetEventHandle failed\n");
}
}
/**
* Called when the program is exiting. This destroys the events.
*/
static void mca_rcache_gpusm_registration_destructor(mca_rcache_gpusm_registration_t *item)
{
uintptr_t event = item->event;
CUresult result;
result = cuEventDestroy((CUevent) event);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_output(0, "cuEventDestroy failed");
}
}
OBJ_CLASS_INSTANCE(mca_rcache_gpusm_registration_t, mca_rcache_base_registration_t,
mca_rcache_gpusm_registration_constructor,
mca_rcache_gpusm_registration_destructor);
/*
* Initializes the rcache module.
*/
void mca_rcache_gpusm_module_init(mca_rcache_gpusm_module_t *rcache)
{
mca_rcache_base_module_init(&rcache->super);
rcache->super.rcache_component = &mca_rcache_gpusm_component.super;
rcache->super.rcache_register = mca_rcache_gpusm_register;
rcache->super.rcache_find = mca_rcache_gpusm_find;
rcache->super.rcache_deregister = mca_rcache_gpusm_deregister;
rcache->super.rcache_finalize = mca_rcache_gpusm_finalize;
OBJ_CONSTRUCT(&rcache->reg_list, opal_free_list_t);
/* Start with 0 entries in the free list since CUDA may not have
* been initialized when this free list is created and there is
* some CUDA specific activities that need to be done. */
opal_free_list_init(&rcache->reg_list, sizeof(struct mca_opal_cuda_reg_t),
opal_cache_line_size, OBJ_CLASS(mca_rcache_gpusm_registration_t), 0,
opal_cache_line_size, 0, -1, 64, NULL, 0, NULL, NULL, NULL);
}
/**
* Just go ahead and get a new registration. The find and register
* functions are the same thing for this memory pool.
*/
int mca_rcache_gpusm_find(mca_rcache_base_module_t *rcache, void *addr, size_t size,
mca_rcache_base_registration_t **reg)
{
return mca_rcache_gpusm_register(rcache, addr, size, 0, 0, reg);
}
/*
* Get the memory handle of a local section of memory that can be sent
* to the remote size so it can access the memory. This is the
* registration function for the sending side of a message transfer.
*/
static int mca_rcache_gpusm_get_mem_handle(void *base, size_t size, mca_rcache_base_registration_t *newreg)
{
CUmemorytype memType;
CUresult result;
CUipcMemHandle *memHandle;
CUdeviceptr pbase;
size_t psize;
mca_opal_cuda_reg_t *cuda_reg = (mca_opal_cuda_reg_t *) newreg;
memHandle = (CUipcMemHandle *) cuda_reg->data.memHandle;
/* We should only be there if this is a CUDA device pointer */
result = cuPointerGetAttribute(&memType, CU_POINTER_ATTRIBUTE_MEMORY_TYPE,
(CUdeviceptr) base);
assert(CUDA_SUCCESS == result);
assert(CU_MEMORYTYPE_DEVICE == memType);
/* Get the memory handle so we can send it to the remote process. */
result = cuIpcGetMemHandle(memHandle, (CUdeviceptr) base);
if (CUDA_SUCCESS != result) {
return OPAL_ERROR;
}
/* Need to get the real base and size of the memory handle. This is
* how the remote side saves the handles in a cache. */
result = cuMemGetAddressRange(&pbase, &psize, (CUdeviceptr) base);
if (CUDA_SUCCESS != result) {
return OPAL_ERROR;
}
/* Store all the information in the registration */
cuda_reg->base.base = (void *) pbase;
cuda_reg->base.bound = (unsigned char *) pbase + psize - 1;
cuda_reg->data.memh_seg_addr.pval = (void *) pbase;
cuda_reg->data.memh_seg_len = psize;
#if OPAL_CUDA_SYNC_MEMOPS
/* With CUDA 6.0, we can set an attribute on the memory pointer that will
* ensure any synchronous copies are completed prior to any other access
* of the memory region. This means we do not need to record an event
* and send to the remote side.
*/
memType = 1; /* Just use this variable since we already have it */
result = cuPointerSetAttribute(&memType, CU_POINTER_ATTRIBUTE_SYNC_MEMOPS,
(CUdeviceptr) base);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
return OPAL_ERROR;
}
#else
/* Need to record the event to ensure that any memcopies into the
* device memory have completed. The event handle associated with
* this event is sent to the remote process so that it will wait
* on this event prior to copying data out of the device memory.
* Note that this needs to be the NULL stream to make since it is
* unknown what stream any copies into the device memory were done
* with. */
result = cuEventRecord((CUevent) cuda_reg->data.event, 0);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
return OPAL_ERROR;
}
#endif /* OPAL_CUDA_SYNC_MEMOPS */
return OPAL_SUCCESS;
}
/*
* This is the one function that does all the work. It will call into
* the register function to get the memory handle for the sending
* buffer. There is no need to deregister the memory handle so the
* deregister function is a no-op.
*/
int mca_rcache_gpusm_register(mca_rcache_base_module_t *rcache, void *addr, size_t size,
uint32_t flags, int32_t access_flags,
mca_rcache_base_registration_t **reg)
{
mca_rcache_gpusm_module_t *rcache_gpusm = (mca_rcache_gpusm_module_t *) rcache;
mca_rcache_base_registration_t *gpusm_reg;
opal_free_list_item_t *item;
unsigned char *base, *bound;
int rc;
/* In spite of the fact we return an error code, the existing code
* checks the registration for a NULL value rather than looking at
* the return code. So, initialize the registration to NULL in
* case we run into a failure. */
*reg = NULL;
base = addr;
bound = (unsigned char *) addr + size - 1;
item = opal_free_list_get(&rcache_gpusm->reg_list);
if (NULL == item) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
gpusm_reg = (mca_rcache_base_registration_t *) item;
gpusm_reg->rcache = rcache;
gpusm_reg->base = base;
gpusm_reg->bound = bound;
gpusm_reg->flags = flags;
gpusm_reg->access_flags = access_flags;
rc = mca_rcache_gpusm_get_mem_handle(base, size, gpusm_reg);
if (rc != OPAL_SUCCESS) {
opal_free_list_return(&rcache_gpusm->reg_list, item);
return rc;
}
*reg = gpusm_reg;
(*reg)->ref_count++;
return OPAL_SUCCESS;
}
/*
* Return the registration to the free list.
*/
int mca_rcache_gpusm_deregister(struct mca_rcache_base_module_t *rcache,
mca_rcache_base_registration_t *reg)
{
int rc;
mca_rcache_gpusm_module_t *rcache_gpusm = (mca_rcache_gpusm_module_t *) rcache;
opal_free_list_return(&rcache_gpusm->reg_list, (opal_free_list_item_t *) reg);
return OPAL_SUCCESS;
}
/**
* Free up the resources.
*/
void mca_rcache_gpusm_finalize(struct mca_rcache_base_module_t *rcache)
{
opal_free_list_item_t *item;
mca_rcache_gpusm_module_t *rcache_gpusm = (mca_rcache_gpusm_module_t *) rcache;
/* Need to run the destructor on each item in the free list explicitly.
* The destruction of the free list only runs the destructor on the
* main free list, not each item. */
while (NULL
!= (item = (opal_free_list_item_t *) opal_lifo_pop(&(rcache_gpusm->reg_list.super)))) {
OBJ_DESTRUCT(item);
}
OBJ_DESTRUCT(&rcache_gpusm->reg_list);
mca_rcache_base_module_fini(rcache);
return;
}
|