1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
/*
* Copyright (c) 2013 Mellanox Technologies, Inc.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "oshmem_config.h"
#include <stdio.h>
#include "oshmem/constants.h"
#include "oshmem/mca/atomic/atomic.h"
#include "oshmem/mca/spml/spml.h"
#include "oshmem/mca/memheap/memheap.h"
#include "oshmem/proc/proc.h"
#include "oshmem/op/op.h"
#include "atomic_basic.h"
static char *atomic_lock_sync;
static int *atomic_lock_turn;
static char *local_lock_sync;
static int *local_lock_turn;
enum {
ATOMIC_LOCK_IDLE = 0,
ATOMIC_LOCK_WAITING = 1,
ATOMIC_LOCK_ACTIVE = 2
};
/*
* Initial query function that is invoked during initialization, allowing
* this module to indicate what level of thread support it provides.
*/
int mca_atomic_basic_startup(bool enable_progress_threads, bool enable_threads)
{
int rc = OSHMEM_SUCCESS;
void* ptr = NULL;
int num_pe = oshmem_num_procs();
rc = MCA_MEMHEAP_CALL(private_alloc((num_pe * sizeof(char)), &ptr));
if (rc == OSHMEM_SUCCESS) {
atomic_lock_sync = (char*) ptr;
memset(atomic_lock_sync, ATOMIC_LOCK_IDLE, sizeof(char) * num_pe);
rc = MCA_MEMHEAP_CALL(private_alloc(sizeof(int), &ptr));
if (rc == OSHMEM_SUCCESS) {
atomic_lock_turn = (int*) ptr;
*atomic_lock_turn = 0;
if (rc == OSHMEM_SUCCESS) {
local_lock_sync = (char*) malloc(num_pe * sizeof(char));
local_lock_turn = (int*) malloc(sizeof(int));
if (!local_lock_sync || !local_lock_turn) {
rc = OSHMEM_ERR_OUT_OF_RESOURCE;
} else {
memcpy((void*) local_lock_sync,
(void*) atomic_lock_sync,
sizeof(char) * num_pe);
*local_lock_turn = *atomic_lock_turn;
}
}
}
}
return rc;
}
int mca_atomic_basic_finalize(void)
{
void* ptr = NULL;
ptr = (void*) atomic_lock_sync;
MCA_MEMHEAP_CALL(private_free(ptr));
atomic_lock_sync = NULL;
ptr = (void*) atomic_lock_turn;
MCA_MEMHEAP_CALL(private_free(ptr));
atomic_lock_turn = NULL;
if (local_lock_sync) {
free((void*) local_lock_sync);
local_lock_sync = NULL;
}
if (local_lock_turn) {
free((void*) local_lock_turn);
local_lock_turn = NULL;
}
return OSHMEM_SUCCESS;
}
static inline
int mca_atomic_basic_fop(shmem_ctx_t ctx,
void *target,
void *prev,
uint64_t value,
size_t size,
int pe,
struct oshmem_op_t *op)
{
int rc = OSHMEM_SUCCESS;
long long temp_value = 0;
atomic_basic_lock(ctx, pe);
rc = MCA_SPML_CALL(get(ctx, target, size, (void*)&temp_value, pe));
memcpy(prev, (void*) &temp_value, size);
op->o_func.c_fn((void*) value,
(void*) &temp_value,
size / op->dt_size);
if (rc == OSHMEM_SUCCESS) {
rc = MCA_SPML_CALL(put(ctx, target, size, (void*)&temp_value, pe));
shmem_quiet();
}
atomic_basic_unlock(ctx, pe);
return rc;
}
static inline
int mca_atomic_basic_op(shmem_ctx_t ctx,
void *target,
uint64_t value,
size_t size,
int pe,
struct oshmem_op_t *op)
{
long long prev;
return mca_atomic_basic_fop(ctx, target, &prev, value, size, pe, op);
}
static int mca_atomic_basic_add(shmem_ctx_t ctx, void *target, uint64_t value,
size_t size, int pe)
{
return mca_atomic_basic_op(ctx, target, value, size, pe,
MCA_BASIC_OP(size, oshmem_op_sum_int32, oshmem_op_sum_int64));
}
static int mca_atomic_basic_and(shmem_ctx_t ctx,
void *target, uint64_t value,
size_t size, int pe)
{
return mca_atomic_basic_op(ctx, target, value, size, pe,
MCA_BASIC_OP(size, oshmem_op_sum_int32, oshmem_op_and_int64));
}
static int mca_atomic_basic_or(shmem_ctx_t ctx, void *target, uint64_t value,
size_t size, int pe)
{
return mca_atomic_basic_op(ctx, target, value, size, pe,
MCA_BASIC_OP(size, oshmem_op_sum_int32, oshmem_op_or_int64));
}
static int mca_atomic_basic_xor(shmem_ctx_t ctx,
void *target, uint64_t value,
size_t size, int pe)
{
return mca_atomic_basic_op(ctx, target, value, size, pe,
MCA_BASIC_OP(size, oshmem_op_sum_int32, oshmem_op_xor_int64));
}
static int mca_atomic_basic_fadd(shmem_ctx_t ctx, void *target, void *prev, uint64_t value,
size_t size, int pe)
{
return mca_atomic_basic_fop(ctx, target, prev, value, size, pe,
MCA_BASIC_OP(size, oshmem_op_sum_int32, oshmem_op_sum_int64));
}
static int mca_atomic_basic_fand(shmem_ctx_t ctx,
void *target, void *prev, uint64_t value,
size_t size, int pe)
{
return mca_atomic_basic_fop(ctx, target, prev, value, size, pe,
MCA_BASIC_OP(size, oshmem_op_sum_int32, oshmem_op_and_int64));
}
static int mca_atomic_basic_for(shmem_ctx_t ctx, void *target, void *prev, uint64_t value,
size_t size, int pe)
{
return mca_atomic_basic_fop(ctx, target, prev, value, size, pe,
MCA_BASIC_OP(size, oshmem_op_sum_int32, oshmem_op_or_int64));
}
static int mca_atomic_basic_fxor(shmem_ctx_t ctx, void *target, void *prev, uint64_t value,
size_t size, int pe)
{
return mca_atomic_basic_fop(ctx, target, prev, value, size, pe,
MCA_BASIC_OP(size, oshmem_op_sum_int32, oshmem_op_xor_int64));
}
static int mca_atomic_basic_swap(shmem_ctx_t ctx, void *target, void *prev, uint64_t value,
size_t size, int pe)
{
return mca_atomic_basic_fop(ctx, target, prev, value, size, pe,
MCA_BASIC_OP(size, oshmem_op_swap_int32, oshmem_op_swap_int64));
}
mca_atomic_base_module_t *
mca_atomic_basic_query(int *priority)
{
mca_atomic_basic_module_t *module;
*priority = mca_atomic_basic_component.priority;
module = OBJ_NEW(mca_atomic_basic_module_t);
if (module) {
module->super.atomic_add = mca_atomic_basic_add;
module->super.atomic_and = mca_atomic_basic_and;
module->super.atomic_or = mca_atomic_basic_or;
module->super.atomic_xor = mca_atomic_basic_xor;
module->super.atomic_fadd = mca_atomic_basic_fadd;
module->super.atomic_fand = mca_atomic_basic_fand;
module->super.atomic_for = mca_atomic_basic_for;
module->super.atomic_fxor = mca_atomic_basic_fxor;
module->super.atomic_swap = mca_atomic_basic_swap;
module->super.atomic_cswap = mca_atomic_basic_cswap;
return &(module->super);
}
return NULL ;
}
void atomic_basic_lock(shmem_ctx_t ctx, int pe)
{
int index = -1;
int me = oshmem_my_proc_id();
int num_pe = oshmem_num_procs();
char lock_required = ATOMIC_LOCK_WAITING;
char lock_active = ATOMIC_LOCK_ACTIVE;
int root_pe = pe;
do {
/* announce that we need the resource */
do {
MCA_SPML_CALL(put(ctx, (void*)(atomic_lock_sync + me), sizeof(lock_required), (void*)&lock_required, root_pe));
MCA_SPML_CALL(get(ctx, (void*)atomic_lock_sync, num_pe * sizeof(*atomic_lock_sync), (void*)local_lock_sync, root_pe));
} while (local_lock_sync[me] != lock_required);
MCA_SPML_CALL(get(ctx, (void*)atomic_lock_turn, sizeof(index), (void*)&index, root_pe));
while (index != me) {
if (local_lock_sync[index] != ATOMIC_LOCK_IDLE) {
MCA_SPML_CALL(get(ctx, (void*)atomic_lock_turn, sizeof(index), (void*)&index, root_pe));
MCA_SPML_CALL(get(ctx, (void*)atomic_lock_sync, num_pe * sizeof(*atomic_lock_sync), (void*)local_lock_sync, root_pe));
} else {
index = (index + 1) % num_pe;
}
}
/* now tentatively claim the resource */
do {
MCA_SPML_CALL(put(ctx, (void*)(atomic_lock_sync + me), sizeof(lock_active), (void*)&lock_active, root_pe));
MCA_SPML_CALL(get(ctx, (void*)atomic_lock_sync, num_pe * sizeof(*atomic_lock_sync), (void*)local_lock_sync, root_pe));
} while (local_lock_sync[me] != lock_active);
index = 0;
while ((index < num_pe)
&& ((index == me)
|| (local_lock_sync[index] != ATOMIC_LOCK_ACTIVE))) {
index = index + 1;
}
MCA_SPML_CALL(get(ctx, (void*)atomic_lock_turn, sizeof(*atomic_lock_turn), (void*)local_lock_turn, root_pe));
} while (!((index >= num_pe)
&& ((*local_lock_turn == me)
|| (local_lock_sync[*local_lock_turn] == ATOMIC_LOCK_IDLE))));
MCA_SPML_CALL(put(ctx, (void*)atomic_lock_turn, sizeof(me), (void*)&me, root_pe));
}
void atomic_basic_unlock(shmem_ctx_t ctx, int pe)
{
int index = -1;
int me = oshmem_my_proc_id();
int num_pe = oshmem_num_procs();
char lock_idle = ATOMIC_LOCK_IDLE;
int root_pe = pe;
MCA_SPML_CALL(get(ctx, (void*)atomic_lock_sync, num_pe * sizeof(*atomic_lock_sync), (void*)local_lock_sync, root_pe));
MCA_SPML_CALL(get(ctx, (void*)atomic_lock_turn, sizeof(index), (void*)&index, root_pe));
do {
index = (index + 1) % num_pe;
} while (local_lock_sync[index] == ATOMIC_LOCK_IDLE);
MCA_SPML_CALL(put(ctx, (void*)atomic_lock_turn, sizeof(index), (void*)&index, root_pe));
do {
MCA_SPML_CALL(put(ctx, (void*)(atomic_lock_sync + me), sizeof(lock_idle), (void*)&lock_idle, root_pe));
MCA_SPML_CALL(get(ctx, (void*)atomic_lock_sync, num_pe * sizeof(*atomic_lock_sync), (void*)local_lock_sync, root_pe));
} while (local_lock_sync[me] != lock_idle);
}
|