File: Manual.tex

package info (click to toggle)
openms 1.11.1-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 436,688 kB
  • ctags: 150,907
  • sloc: cpp: 387,126; xml: 71,547; python: 7,764; ansic: 2,626; php: 2,499; sql: 737; ruby: 342; sh: 325; makefile: 128
file content (374 lines) | stat: -rw-r--r-- 10,656 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

\documentclass[10pt]{article}
% \usepackage{amsmath}
\usepackage{listings}
\usepackage{url}
\setlength{\parindent}{0pt}
\usepackage[parfill]{parskip}
% \usepackage{fullpage}
\usepackage[margin=1.5in]{geometry}



\usepackage[
  pdfpagemode=UseOutlines,
  pdfdisplaydoctitle=true,
  colorlinks=true,
  linkcolor=black,
  filecolor=black,
  pagecolor=black,
  urlcolor=black,
  frenchlinks=true
]{hyperref}

\usepackage{tocloft}% http://ctan.org/pkg/tocloft
\setlength{\cftsubsecnumwidth}{3.5em}% Set length of number width in ToC for \subsection

\title{pyOpenMS }
\author{OpenMS Development Team}
\date{}
\begin{document}
  \maketitle

  % TODO update numbers from time to time
  pyOpenMS is a set of Python bindings of the C++ OpenMS library. It allows to
  access a large number of objects (350+) and functions (3900+) of the C++
  code directly from Python. 
  The main functions of the library are explained in the first section of this
  manual. A list of all wrapped functions can be found in the appendix of this
  manual.

  Since all functions in Python directly call C++ and their function signature
  usually corresponds to the one in C++, the OpenMS documentation is for most
  cases the most complete and up-to-date reference also and applies directly
  to pyOpenMS. In this manual, only differences to the existing documentation
  will be highlighted and some general usecases will be explained. The link to
  the documentation of the latest release can be found here:
  \url{http://open-ms.sourceforge.net/documentation/}.

  \tableofcontents

  \pagebreak

  The following section will explain the most important functions of pyOpenMS
  in more detail with full examples of Python code that can be directly
  executed.

\section{File Input/Output}

  pyOpenMS supports file input and output for various formats. These formats
  include \texttt{DTA2D, DTA, EDTA, FeatureXML, Kroenik, MzData, MzIdentML, IdXML, mzML,
  mzXML, PepXML, ProtXML, TraML, XTandemXML}.

\subsection{Common Pattern}

Most file format objects follow the following idiome

\begin{verbatim}
from pyopenms import *
file = FileObject() 
exp = MSExperiment() 
file.load(filename_in, exp)
# process data
file.store(filename_in, exp)
\end{verbatim}

where FileObject can be any of \texttt{DTA2DFile, DTAFile, mzXML, mzML}.

For \texttt{EDTAFile}, you must load and store a \texttt{ConsensusMap} instead
of an \texttt{MSExperiment}.
for \texttt{FeatureXMLFile}, you must load and store a \texttt{FeatureMap} instead
of an \texttt{MSExperiment}.


\subsection{IdXML}
\begin{verbatim}
from pyopenms import *
id_file = IdXMLFile() 
filename_in = "input.IdXML"
filename_out = "output.IdXML"
protein_ids = []
peptide_ids = []
id_file.load(filename_in, protein_ids, peptide_ids)
# process 
id_file.store(filename_out, protein_ids, peptide_ids)
\end{verbatim}

see also Section~\ref{IdXMLFile}.

\subsection{PepXML}
\begin{verbatim}
from pyopenms import *
id_file = PepXMLFile() 
filename_in = "input.pep.xml"
filename_out = "output.pep.xml"
protein_ids = []
peptide_ids = []
id_file.load(filename_in, protein_ids, peptide_ids)
# process 
id_file.store(filename_out, protein_ids, peptide_ids)
\end{verbatim}

\texttt{PepXML} also supports loading with an additional parameter specificing
an MSExperiment which contains the retention time corresponding to the peptide
hits (since these may not be stored in a pep.xml file).

see also Section~\ref{PepXMLFile}.

\subsection{ProtXML}
\begin{verbatim}
from pyopenms import *
id_file = ProtXMLFile() 
filename_in = "input.prot.xml"
protein_id = ProteinIdentification()
peptide_id = PeptideIdentification()
id_file.load(filename_in, protein_id, peptide_id)
# process 
# storing not supported
\end{verbatim}

\texttt{ProtXML} currently only supports loading of data.

\subsection{MzIdentML}
\begin{verbatim}
from pyopenms import *
id_file = MzIdentMLFile() 
filename_in = "input.mzid"
filename_out = "output.mzid"
identification = Identification()
id_file.load(filename_in, identification)
# process 
id_file.store(filename_out, identification)
\end{verbatim}

Alternatively, MzIdentMLFile also provides a function to load (but not store)
data equivalent to IdXML using two empty vectors that will be filled with
\texttt{ProteinIdentification} and \texttt{PeptideIdentification} objects.

\subsection{TraML}
\begin{verbatim}
from pyopenms import *
tramlfile = TraMLFile() 
filename_in = "input.TraML"
targeted_exp = TargetedExperiment()
idtramlfile.load(filename_in, targeted_exp)
# process 
tramlfilefile.store(filename_out, targeted_exp)
\end{verbatim}

see also Section~\ref{TraMLFile}.

\subsection{MzML}
\begin{verbatim}
from pyopenms import *
file = MzMLFile() 
exp = MSExperiment() 
filename_in = "input.mzML"
filename_out = "output.mzML"
file.load(filename_in, exp)
# process 
file.store(filename_in, exp)
\end{verbatim}

see also Section~\ref{MzMLFile}.

\pagebreak
\section{Parameter Handling}

Paramter handling in OpenMS and pyOpenMS is usually implemented through
inheritance from \texttt{DefaultParamHandler} and allow access to parameters
through the \texttt{Param} object. This means, the classes implement the
methods \texttt{getDefaults}, \texttt{getParameters}, \texttt{setParameters}
which allows access to the default parameters, the current parameters and
allows to set the parameters.

The Param file that is returned can be manipulated through the \texttt{setValue} and
\texttt{getValue} methods (the \texttt{existsts} method can be used to check for existance of a
key). Using the \texttt{getDescription} method, it is possible to get a help-text for
each parameter value in an interactive session without consulting the documentation.

\section{Signal Processing and Filter}
Most signal processing algorithms follow a similar pattern in OpenMS.  

\begin{verbatim}
filter = FilterObject()
exp = MSExperiment() 
# populate exp
filter.filterExperiment(exp)
\end{verbatim}

Since they work on a single \texttt{MSExperiment} object, little input is needed to
execute a filter directly on the data. Examples of filters that follow this
pattern are \texttt{GaussFilter, SavitzkyGolayFilter} as well as the spectral
filters \texttt{BernNorm, MarkerMower, NLargest, Normalizer, ParentPeakMower,
Scaler, SpectraMerger, SqrtMower, ThresholdMower, WindowMower}.

\section{Complex algorithmic tools}

More complex algorithmic tools require a short explanation and usage:

\subsection{iTRAQ Analyzer}

The iTRAQ Analyzer uses internally two classes, the
\texttt{ItraqChannelExtractor} and the \texttt{ItraqQuantifier} which are
described in the following code snippet:

\begin{verbatim}

file = MzMLFile() 
exp = MSExperiment() 
file.load(filename_in, exp)
consensus_map_raw = ConsensusMap()  
consensus_map_quant = ConsensusMap() 

itraq_type = ITRAQ_TYPES.FOURPLEX # other options: EIGHTPLEX, TMT_SIXPLEX
extract_param = ItraqChannelExtractor().getDefaults()
itraq_ce = ItraqChannelExtractor(itraq_type, extract_param)

# extract raw signals
itraq_ce.run(exp, consensus_map_raw)

# do normalization
quant_param = ItraqQuantifier().getDefaults()
itraq_quant = ItraqQuantifier(itraq_type, quant_param)

itraq_quant.run(consensus_map_raw, consensus_map_quant)

outfile = ConsensusXMLFile()
oufile.store(filename_out, consensus_map_quant)
\end{verbatim}

\subsection{Centroided FeatureFinder}

The FeatureFinder for centroided data is called
\texttt{FeatureFinderAlgorithmPicked} in OpenMS.

\begin{verbatim}
# set input_path and out_path
seeds = FeatureMap()

fh = MzMLFile()
options = PeakFileOptions()
options.setMSLevels([1,1])
fh.setOptions(options)
input_map = MSExperiment()
fh.load(input_path, input_map)
input_map.updateRanges()

ff = FeatureFinder()
ff.setLogType(LogType.CMD)

# Run the feature finder
features = FeatureMap()
name = FeatureFinderAlgorithmPicked.getProductName()
params = FeatureFinder().getParameters(name)
ff.run(name, input_map, features, params, seeds)

features.setUniqueIds()
fh = FeatureXMLFile()
fh.store(out_path, features)
\end{verbatim}

\subsection{SILACAnalyzer}

\begin{verbatim}

exp = pyopenms.MSExperiment()
# load experiment (raw data)
out_map = pyopenms.ConsensusMap()

# Options
selected_labels = "Lys8"
charge_min = 2
charge_max = 4
missed_cleavages = 0
isotopes_per_peptide_min = 3
isotopes_per_peptide_max = 5
# section "algorithm"
rt_threshold = 30
rt_min = 0.0
intensity_cutoff = 10
intensity_correlation = 0.7
model_deviation = 3.0
allow_missing_peaks = True
# labels
label_identifiers = { "Lys8" : 8.0141988132}

analyzer = pyopenms.SILACAnalyzer()
analyzer.initialize(
      # section sample
      selected_labels,
      charge_min,
      charge_max,
      missed_cleavages,
      isotopes_per_peptide_min,
      isotopes_per_peptide_max,
      # section "algorithm"
      rt_threshold,
      rt_min,
      intensity_cutoff,
      intensity_correlation,
      model_deviation,
      allow_missing_peaks,
      # labels
      label_identifiers)

analyzer.run_all(exp, out_map)

\end{verbatim}


\subsection{OpenSwathAnalyzer}

The OpenSwathAnalyzer calls internally an object called
MRMFeatureFinderScoring (since it does feature finding based on a scoring
approach). It takes as input the chromatograms and the targeted library
(transition library) in TraML format. Furthermore, it also takes a
transformation description and a Swath file as optional arguments.

\begin{verbatim}
# load chromatograms
chromatograms = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment("infile.mzML", chromatograms)

# load TraML file
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load("tramlfile.TraML", targeted);

# Create empty files as input and finally as output
empty_swath = pyopenms.MSExperiment()
trafo = pyopenms.TransformationDescription()
output = pyopenms.FeatureMap();

# set up OpenSwath analyzer (featurefinder) and run
featurefinder = pyopenms.MRMFeatureFinderScoring()
featurefinder.pickExperiment(chromatograms, output, targeted, trafo, empty_swath)

# Store outfile
featurexml = pyopenms.FeatureXMLFile()
featurexml.store("outfile.featureXML", output)
\end{verbatim}

\section{Iterators}

Several core-OpenMS objects have been adapted to allow iteration in a native
way in Python. These objects are currently \texttt{ConsensusMap, FeatureMap,
MSExperiment, MSSpectrum} and \texttt{MSChromatogram}. They thus allow the
following syntax: 

\begin{verbatim}
for spectrum in ms_experiment:
  for peak in spectrum:
    # process an individual peak
    pass
\end{verbatim}

\section{Appendix}
In this appendix, a complete list of all wrapped functions is given, ordered
by class.

\include{appendix}

\end{document}