1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
|
import pyopenms
"""
Producing the test data for TOPP_FeatureLinkerUnlabeledQT_5 and TOPP_FeatureLinkerUnlabeledQT_6
"""
fmaps = [ pyopenms.FeatureMap() for i in range(3)]
pepids = []
pepseq = ["PEPTIDEA", "PEPTIDEK", "PEPTIDER"]
for s in pepseq:
pepid = pyopenms.PeptideIdentification()
hit = pyopenms.PeptideHit()
hit.setSequence(pyopenms.AASequence.fromString(s, True))
pepid.insertHit(hit)
pepid.setIdentifier("Protein0")
pepids.append(pepid)
protid = pyopenms.ProteinIdentification()
protid.setIdentifier("Protein0")
for i,fmap in enumerate(fmaps):
fmap.setProteinIdentifications( [protid])
# add 3 features to each map, but with a twist (adding different peptide ids to different maps)
for k in range(3):
f = pyopenms.Feature()
f.setRT(300 + k*100 + i*10)
f.setMZ(500 + k*0.001 + i*0.01)
f.setIntensity(500 + i*100)
f.setMetaValue("sequence", pepseq[ (i+k) % 3]) # easier viewing in TOPPView
f.setPeptideIdentifications( [pepids[(i+k) % 3]] )
fmap.push_back(f)
pyopenms.FeatureXMLFile().store("output_%s.featureXML" % i, fmap)
|