File: random_normal.h

package info (click to toggle)
openms 2.6.0%2Bcleaned1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 783,124 kB
  • sloc: cpp: 526,887; xml: 142,287; ansic: 54,252; python: 11,640; php: 2,454; sh: 1,137; ruby: 529; yacc: 403; perl: 85; lex: 74; makefile: 60
file content (158 lines) | stat: -rw-r--r-- 5,326 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// ==========================================================================
//                 SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2013, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of Knut Reinert or the FU Berlin nor the names of
//       its contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// ==========================================================================
// Code for normally distributed random number generation.
// ==========================================================================

#ifndef SEQAN_RANDOM_RANDOM_NORMAL_H_
#define SEQAN_RANDOM_RANDOM_NORMAL_H_

namespace seqan {

// ===========================================================================
// Forwards, Tags.
// ===========================================================================

// Specialization Tag for normal distribution.
struct Normal_;
typedef Tag<Normal_> Normal;

// ===========================================================================
// Classes
// ===========================================================================

/*!
 * @class NormalPdf Normal Pdf
 * @extends Pdf
 * @headerfile <seqan/random.h>
 *
 * @signature template <>
 *            class Pdf<Normal>;
 */

/**
.Spec.Normal Pdf
..signature:Pdf<Normal>
..general:Class.Pdf
..summary:Normal probability density function.
..cat:Random
..include:seqan/random.h
..wiki:Tutorial/Randomness|Tutorial: Randomness
*/

template <>
class Pdf<Normal>
{
public:
    double _mu;
    double _sigma;

/*!
 * @fn NormalPdf::Pdf
 * @brief Constructor for normal distribution Pdf.
 *
 * @signature Pdf::pdf(mu, sigma);
 *
 * @param[in] mu    Mean of the normal distribution, double.
 * @param[in] sigma Standard deviation of the normal distribution, double.
 */

/**
.Memfunc.Normal Pdf#Pdf
..class:Spec.Normal Pdf
..summary:Constructor for normal Pdf.
..signature:Pdf<Normal>(mu, sigma)
..param.mu:Mean of the normal distribution.
...type:nolink:double
..param.sigma:Standard deviation of the normal distribution.
...type:nolink:double
*/
    Pdf(double mu, double sigma)
            : _mu(mu), _sigma(sigma)
    {
        SEQAN_CHECKPOINT;
    }
};

// ===========================================================================
// Metafunctions
// ===========================================================================

template <>
struct Value<Pdf<Normal> >
{
    typedef double Type;
};

template <>
struct Value<const Pdf<Normal> > : Value<Pdf<Normal> > {};

// ===========================================================================
// Functions
// ===========================================================================

static const double SEQAN_NV_MAGICCONST = 1.7155277699214135;  // == 4 * exp(-0.5)/sqrt(2.0)

/*
..summary:Pick a normally distributed random number.
*/
template <typename TRNG>
inline
typename Value<Pdf<Normal> >::Type
pickRandomNumber(TRNG & rng, Pdf<Normal> const & pdf)
{
    SEQAN_CHECKPOINT;

    // Normal Distribution Heuristics, ported from Python.
    //
    // Kinderman and Monahan method. Reference: Kinderman, A.J. and
    // Monahan, J.F., "Computer generation of random variables using
    // the ratio of uniform deviates", ACM Trans Math Software, 3,
    // (1977), pp257-260.

    double z;
    Pdf<Uniform<double> > pdfUniform(0, 1);
    while (true) {
        double u1 = pickRandomNumber(rng, pdfUniform);
        double u2 = 1 - pickRandomNumber(rng, pdfUniform);
        z = SEQAN_NV_MAGICCONST * (u1 - 0.5) / u2;
        double zz = z * z / 4.0;
        if (zz < -::std::log10(u2))
            break;
    }
    return pdf._mu + z * pdf._sigma;
}

}  // namespace seqan

#endif  // SEQAN_RANDOM_RANDOM_NORMAL_H_