1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
#include "utilpackage.hpp"
#include <algorithm>
#include <array>
#include <iomanip>
#include <limits>
#include <sstream>
#include <components/misc/color.hpp>
#include <components/misc/mathutil.hpp>
#include "luastate.hpp"
#include "util.hpp"
#include "shapes/box.hpp"
namespace sol
{
template <>
struct is_automagical<LuaUtil::Vec2> : std::false_type
{
};
template <>
struct is_automagical<LuaUtil::Vec3> : std::false_type
{
};
template <>
struct is_automagical<LuaUtil::Vec4> : std::false_type
{
};
template <>
struct is_automagical<Misc::Color> : std::false_type
{
};
template <>
struct is_automagical<LuaUtil::TransformM> : std::false_type
{
};
template <>
struct is_automagical<LuaUtil::TransformQ> : std::false_type
{
};
template <>
struct is_automagical<LuaUtil::Box> : std::false_type
{
};
}
namespace LuaUtil
{
namespace
{
template <typename T>
float zero(const T& v)
{
return 0.f;
}
template <typename T>
float one(const T& v)
{
return 1.f;
}
template <typename T, std::size_t I>
float get(const T& v)
{
return v[I];
}
// Creates bindings for all possible permutations (repetition allowed) of x,y,z,w fields
template <typename T>
void addSwizzleFields(sol::usertype<T>& type)
{
// Generate mapping of swizzle characters to their getter functions
constexpr auto components = []() {
std::array<std::pair<char, float (*)(const T&)>, T::num_components + 2> arr;
// 0/1 Components
arr[T::num_components] = { '0', zero<T> };
arr[T::num_components + 1] = { '1', one<T> };
// x,y,z,w components
if constexpr (T::num_components > 1)
{
arr[0] = { 'x', get<T, 0> };
arr[1] = { 'y', get<T, 1> };
}
if constexpr (T::num_components > 2)
arr[2] = { 'z', get<T, 2> };
if constexpr (T::num_components > 3)
arr[3] = { 'w', get<T, 3> };
return arr;
}();
// Iterate over the permutations
for (const auto& comp1 : components)
{
// Single component swizzle
type[std::string{ comp1.first }] = sol::readonly_property([=](const T& v) { return comp1.second(v); });
for (const auto& comp2 : components)
{
// Two component swizzles
type[std::string{ comp1.first, comp2.first }]
= sol::readonly_property([=](const T& v) { return Vec2(comp1.second(v), comp2.second(v)); });
for (const auto& comp3 : components)
{
// Three component swizzles
type[std::string{ comp1.first, comp2.first, comp3.first }] = sol::readonly_property(
[=](const T& v) { return Vec3(comp1.second(v), comp2.second(v), comp3.second(v)); });
for (const auto& comp4 : components)
{
// Four component swizzles
type[std::string{ comp1.first, comp2.first, comp3.first, comp4.first }]
= sol::readonly_property([=](const T& v) {
return Vec4(comp1.second(v), comp2.second(v), comp3.second(v), comp4.second(v));
});
}
}
}
}
}
template <typename T>
void addVectorMethods(sol::usertype<T>& vectorType)
{
vectorType[sol::meta_function::unary_minus] = [](const T& a) { return -a; };
vectorType[sol::meta_function::addition] = [](const T& a, const T& b) { return a + b; };
vectorType[sol::meta_function::subtraction] = [](const T& a, const T& b) { return a - b; };
vectorType[sol::meta_function::equal_to] = [](const T& a, const T& b) { return a == b; };
vectorType[sol::meta_function::multiplication] = sol::overload(
[](const T& a, float c) { return a * c; }, [](const T& a, const T& b) { return a * b; });
vectorType[sol::meta_function::division] = [](const T& a, float c) { return a / c; };
vectorType["dot"] = [](const T& a, const T b) { return a * b; };
vectorType["length"] = &T::length;
vectorType["length2"] = &T::length2;
vectorType["normalize"] = [](const T& v) {
float len = v.length();
if (len == 0)
return std::make_tuple(T(), 0.f);
else
return std::make_tuple(v * (1.f / len), len);
};
vectorType["emul"] = [](const T& a, const T& b) {
T result;
for (int i = 0; i < T::num_components; ++i)
result[i] = a[i] * b[i];
return result;
};
vectorType["ediv"] = [](const T& a, const T& b) {
T result;
for (int i = 0; i < T::num_components; ++i)
result[i] = a[i] / b[i];
return result;
};
vectorType[sol::meta_function::to_string] = [](const T& v) {
std::stringstream ss;
ss << std::setprecision(std::numeric_limits<typename T::value_type>::max_exponent10);
ss << "(" << v[0];
for (int i = 1; i < T::num_components; ++i)
ss << ", " << v[i];
ss << ")";
return ss.str();
};
addSwizzleFields(vectorType);
}
}
sol::table initUtilPackage(lua_State* L)
{
sol::state_view lua(L);
sol::table util(lua, sol::create);
// Lua bindings for Vec2
util["vector2"] = [](float x, float y) { return Vec2(x, y); };
sol::usertype<Vec2> vec2Type = lua.new_usertype<Vec2>("Vec2");
addVectorMethods<Vec2>(vec2Type);
vec2Type["rotate"] = &Misc::rotateVec2f;
// Lua bindings for Vec3
util["vector3"] = [](float x, float y, float z) { return Vec3(x, y, z); };
sol::usertype<Vec3> vec3Type = lua.new_usertype<Vec3>("Vec3");
addVectorMethods<Vec3>(vec3Type);
vec3Type[sol::meta_function::involution] = [](const Vec3& a, const Vec3& b) { return a ^ b; };
vec3Type["cross"] = [](const Vec3& a, const Vec3& b) { return a ^ b; };
// Lua bindings for Vec4
util["vector4"] = [](float x, float y, float z, float w) { return Vec4(x, y, z, w); };
sol::usertype<Vec4> vec4Type = lua.new_usertype<Vec4>("Vec4");
addVectorMethods<Vec4>(vec4Type);
// Lua bindings for Box
util["box"] = sol::overload([](const Vec3& center, const Vec3& halfSize) { return Box(center, halfSize); },
[](const TransformM& transform) { return Box(transform.mM); },
[](const TransformQ& transform) { return Box(Vec3(), Vec3(1, 1, 1), transform.mQ); });
sol::usertype<Box> boxType = lua.new_usertype<Box>("Box");
boxType["center"] = sol::readonly_property([](const Box& b) { return b.mCenter; });
boxType["halfSize"] = sol::readonly_property([](const Box& b) { return b.mHalfSize; });
boxType["transform"] = sol::readonly_property([](const Box& b) { return TransformM{ b.asTransform() }; });
boxType["vertices"] = sol::readonly_property([lua](const Box& b) {
sol::table table(lua, sol::create);
const auto vertices = b.vertices();
for (size_t i = 0; i < vertices.size(); ++i)
table[toLuaIndex(i)] = vertices[i];
return table;
});
boxType[sol::meta_function::equal_to] = [](const Box& a, const Box& b) { return a == b; };
boxType[sol::meta_function::to_string] = [](const Box& b) {
std::stringstream ss;
ss << "Box{ ";
ss << "center(" << b.mCenter.x() << ", " << b.mCenter.y() << ", " << b.mCenter.z() << ") ";
ss << "halfSize(" << b.mHalfSize.x() << ", " << b.mHalfSize.y() << ", " << b.mHalfSize.z() << ")";
ss << " }";
return ss.str();
};
// Lua bindings for Color
sol::usertype<Misc::Color> colorType = lua.new_usertype<Misc::Color>("Color");
colorType["r"] = sol::readonly_property([](const Misc::Color& c) { return c.r(); });
colorType["g"] = sol::readonly_property([](const Misc::Color& c) { return c.g(); });
colorType["b"] = sol::readonly_property([](const Misc::Color& c) { return c.b(); });
colorType["a"] = sol::readonly_property([](const Misc::Color& c) { return c.a(); });
colorType[sol::meta_function::to_string] = [](const Misc::Color& c) { return c.toString(); };
colorType["asRgba"] = [](const Misc::Color& c) { return Vec4(c.r(), c.g(), c.b(), c.a()); };
colorType["asRgb"] = [](const Misc::Color& c) { return Vec3(c.r(), c.g(), c.b()); };
colorType["asHex"] = [](const Misc::Color& c) { return c.toHex(); };
colorType[sol::meta_function::equal_to] = [](const Misc::Color& a, const Misc::Color& b) { return a == b; };
sol::table color(lua, sol::create);
color["rgba"] = [](float r, float g, float b, float a) { return Misc::Color(r, g, b, a); };
color["rgb"] = [](float r, float g, float b) { return Misc::Color(r, g, b, 1); };
color["hex"] = [](std::string_view hex) { return Misc::Color::fromHex(hex); };
util["color"] = LuaUtil::makeReadOnly(color);
// Lua bindings for Transform
sol::usertype<TransformM> transMType = lua.new_usertype<TransformM>("TransformM");
sol::usertype<TransformQ> transQType = lua.new_usertype<TransformQ>("TransformQ");
sol::table transforms(lua, sol::create);
util["transform"] = LuaUtil::makeReadOnly(transforms);
transforms["identity"] = sol::make_object(lua, TransformQ{ osg::Quat() });
transforms["move"] = sol::overload([](const Vec3& v) { return TransformM{ osg::Matrixf::translate(v) }; },
[](float x, float y, float z) { return TransformM{ osg::Matrixf::translate(x, y, z) }; });
transforms["scale"] = sol::overload([](const Vec3& v) { return TransformM{ osg::Matrixf::scale(v) }; },
[](float x, float y, float z) { return TransformM{ osg::Matrixf::scale(x, y, z) }; });
transforms["rotate"] = [](float angle, const Vec3& axis) { return TransformQ{ osg::Quat(angle, axis) }; };
transforms["rotateX"] = [](float angle) { return TransformQ{ osg::Quat(angle, Vec3(-1, 0, 0)) }; };
transforms["rotateY"] = [](float angle) { return TransformQ{ osg::Quat(angle, Vec3(0, -1, 0)) }; };
transforms["rotateZ"] = [](float angle) { return TransformQ{ osg::Quat(angle, Vec3(0, 0, -1)) }; };
transMType[sol::meta_function::multiplication]
= sol::overload([](const TransformM& a, const Vec3& b) { return a.mM.preMult(b); },
[](const TransformM& a, const TransformM& b) { return TransformM{ b.mM * a.mM }; },
[](const TransformM& a, const TransformQ& b) {
TransformM res{ a.mM };
res.mM.preMultRotate(b.mQ);
return res;
});
transMType[sol::meta_function::to_string] = [](const TransformM& m) {
osg::Vec3f trans, scale;
osg::Quat rotation, so;
m.mM.decompose(trans, rotation, scale, so);
osg::Quat::value_type rot_angle, so_angle;
osg::Vec3f rot_axis, so_axis;
rotation.getRotate(rot_angle, rot_axis);
so.getRotate(so_angle, so_axis);
std::stringstream ss;
ss << "TransformM{ ";
if (trans.length2() > 0)
ss << "move(" << trans.x() << ", " << trans.y() << ", " << trans.z() << ") ";
if (rot_angle != 0)
ss << "rotation(angle=" << rot_angle << ", axis=(" << rot_axis.x() << ", " << rot_axis.y() << ", "
<< rot_axis.z() << ")) ";
if (scale.x() != 1 || scale.y() != 1 || scale.z() != 1)
ss << "scale(" << scale.x() << ", " << scale.y() << ", " << scale.z() << ") ";
if (so_angle != 0)
ss << "rotation(angle=" << so_angle << ", axis=(" << so_axis.x() << ", " << so_axis.y() << ", "
<< so_axis.z() << ")) ";
ss << "}";
return ss.str();
};
transMType["apply"] = [](const TransformM& a, const Vec3& b) { return a.mM.preMult(b); },
transMType["inverse"] = [](const TransformM& m) {
TransformM res;
if (!res.mM.invert_4x3(m.mM))
throw std::runtime_error("This Transform is not invertible");
return res;
};
transMType["getYaw"] = [](const TransformM& m) {
osg::Vec3f angles = Misc::toEulerAnglesXZ(m.mM);
return angles.z();
};
transMType["getPitch"] = [](const TransformM& m) {
osg::Vec3f angles = Misc::toEulerAnglesXZ(m.mM);
return angles.x();
};
transMType["getAnglesXZ"] = [](const TransformM& m) {
osg::Vec3f angles = Misc::toEulerAnglesXZ(m.mM);
return std::make_tuple(angles.x(), angles.z());
};
transMType["getAnglesZYX"] = [](const TransformM& m) {
osg::Vec3f angles = Misc::toEulerAnglesZYX(m.mM);
return std::make_tuple(angles.z(), angles.y(), angles.x());
};
transQType[sol::meta_function::multiplication]
= sol::overload([](const TransformQ& a, const Vec3& b) { return a.mQ * b; },
[](const TransformQ& a, const TransformQ& b) { return TransformQ{ b.mQ * a.mQ }; },
[](const TransformQ& a, const TransformM& b) {
TransformM res{ b };
res.mM.postMultRotate(a.mQ);
return res;
});
transQType[sol::meta_function::to_string] = [](const TransformQ& q) {
osg::Quat::value_type angle;
osg::Vec3f axis;
q.mQ.getRotate(angle, axis);
std::stringstream ss;
ss << "TransformQ{ rotation(angle=" << angle << ", axis=(" << axis.x() << ", " << axis.y() << ", "
<< axis.z() << ")) }";
return ss.str();
};
transQType["apply"] = [](const TransformQ& a, const Vec3& b) { return a.mQ * b; },
transQType["inverse"] = [](const TransformQ& q) { return TransformQ{ q.mQ.inverse() }; };
transQType["getYaw"] = [](const TransformQ& q) {
osg::Vec3f angles = Misc::toEulerAnglesXZ(q.mQ);
return angles.z();
};
transQType["getPitch"] = [](const TransformQ& q) {
osg::Vec3f angles = Misc::toEulerAnglesXZ(q.mQ);
return angles.x();
};
transQType["getAnglesXZ"] = [](const TransformQ& q) {
osg::Vec3f angles = Misc::toEulerAnglesXZ(q.mQ);
return std::make_tuple(angles.x(), angles.z());
};
transQType["getAnglesZYX"] = [](const TransformQ& q) {
osg::Vec3f angles = Misc::toEulerAnglesZYX(q.mQ);
return std::make_tuple(angles.z(), angles.y(), angles.x());
};
// Utility functions
util["clamp"] = [](double value, double from, double to) { return std::clamp(value, from, to); };
// NOTE: `util["clamp"] = std::clamp<float>` causes error 'AddressSanitizer: stack-use-after-scope'
util["normalizeAngle"] = &Misc::normalizeAngle;
util["makeReadOnly"] = [](const sol::table& tbl) { return makeReadOnly(tbl, /*strictIndex=*/false); };
util["makeStrictReadOnly"] = [](const sol::table& tbl) { return makeReadOnly(tbl, /*strictIndex=*/true); };
util["remap"] = [](double value, double min, double max, double newMin, double newMax) {
return newMin + (value - min) * (newMax - newMin) / (max - min);
};
util["round"] = [](double value) { return round(value); };
if (lua["bit32"] != sol::nil)
{
sol::table bit = lua["bit32"];
util["bitOr"] = bit["bor"];
util["bitAnd"] = bit["band"];
util["bitXor"] = bit["bxor"];
util["bitNot"] = bit["bnot"];
}
else
{
util["bitOr"] = [](unsigned a, sol::variadic_args va) {
for (const auto& v : va)
a |= cast<unsigned>(v);
return a;
};
util["bitAnd"] = [](unsigned a, sol::variadic_args va) {
for (const auto& v : va)
a &= cast<unsigned>(v);
return a;
};
util["bitXor"] = [](unsigned a, sol::variadic_args va) {
for (const auto& v : va)
a ^= cast<unsigned>(v);
return a;
};
util["bitNot"] = [](unsigned a) { return ~a; };
}
util["loadCode"] = [](const std::string& code, const sol::table& env, sol::this_state s) {
sol::state_view lua(s);
sol::load_result res = lua.load(code, "", sol::load_mode::text);
if (!res.valid())
throw std::runtime_error("Lua error: " + res.get<std::string>());
sol::function fn = res;
sol::environment newEnv(lua, sol::create, env);
newEnv[sol::metatable_key][sol::meta_function::new_index] = env;
sol::set_environment(newEnv, fn);
return fn;
};
return util;
}
}
|