File: FT_ProExpn_VNA.c

package info (click to toggle)
openmx 3.2.4.dfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: lenny, squeeze
  • size: 62,572 kB
  • ctags: 2,684
  • sloc: ansic: 130,666; python: 876; makefile: 560; xml: 63; perl: 18; sh: 4
file content (207 lines) | stat: -rw-r--r-- 4,762 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/**********************************************************************
  FT_ProExpn_VNA.c:

     FT_ProExpn_VNA.c is a subroutine to Fourier transform
     VNA separable projectors.

  Log of FT_ProExpn_VNA.c:

     7/Apr/2004  Released by T.Ozaki

***********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "openmx_common.h"

#ifdef nompi
#include "mimic_mpi.h"
#else
#include "mpi.h"
#endif



void FT_ProExpn_VNA()
{
  int numprocs,myid,ID,tag=999;
  int count,NumSpe;
  int L,i,kj,num_k;
  int Lspe,spe,GL,Mul;
  double Sr,Dr;
  double dk,norm_k,h,dum0;
  double rmin,rmax,r,sum;
  double kmin,kmax,Sk,Dk;
  double sj,sy,sjp,syp;
  double RGL[GL_Mesh + 2];
  double *SumTmp;
  double tmp0,tmp1;
  double **SphB,**SphBp;
  double *tmp_SphB,*tmp_SphBp;
  double TStime, TEtime;
  MPI_Status stat;
  MPI_Request request;

  dtime(&TStime);

  /* MPI */
  MPI_Comm_size(mpi_comm_level1,&numprocs);
  MPI_Comm_rank(mpi_comm_level1,&myid);

  if (myid==Host_ID) printf("<FT_ProExpn_VNA>  Fourier transform of VNA separable projectors\n");

  for (Lspe=0; Lspe<MSpeciesNum; Lspe++){

    spe = Species_Top[myid] + Lspe;

    /* initalize */

    rmin = Spe_VPS_RV[spe][0];
    rmax = Spe_Atom_Cut1[spe] + 0.5;
    Sr = rmax + rmin;
    Dr = rmax - rmin;
    for (i=0; i<GL_Mesh; i++){
      RGL[i] = 0.50*(Dr*GL_Abscissae[i] + Sr);
    }

    num_k = Ngrid_NormK;
    dk = PAO_Nkmax/(double)num_k;

    /* allocate SphB and SphBp */

    SumTmp = (double*)malloc(sizeof(double)*List_YOUSO[34]);

    SphB = (double**)malloc(sizeof(double*)*(List_YOUSO[35]+3));
    for(L=0; L<(List_YOUSO[35]+3); L++){ 
      SphB[L] = (double*)malloc(sizeof(double)*GL_Mesh);
    }

    SphBp = (double**)malloc(sizeof(double*)*(List_YOUSO[35]+3));
    for(L=0; L<(List_YOUSO[35]+3); L++){ 
      SphBp[L] = (double*)malloc(sizeof(double)*GL_Mesh);
    }

    tmp_SphB  = (double*)malloc(sizeof(double)*(List_YOUSO[35]+3));
    tmp_SphBp = (double*)malloc(sizeof(double)*(List_YOUSO[35]+3));

    /* tabulation on Gauss-Legendre radial grid */

    kmin = Radial_kmin;
    kmax = PAO_Nkmax;
    Sk = kmax + kmin;
    Dk = kmax - kmin;
   
    /* loop for kj */
    
    for (kj=0; kj<GL_Mesh; kj++){

      norm_k = 0.50*(Dk*GL_Abscissae[kj] + Sk);

      /* calculate SphB */

      for (i=0; i<GL_Mesh; i++){

        r = RGL[i];
	Spherical_Bessel(norm_k*r,List_YOUSO[35],tmp_SphB,tmp_SphBp);

	for(L=0; L<=List_YOUSO[35]; L++){ 
	  SphB[L][i]  =  tmp_SphB[L]; 
	  SphBp[L][i] = tmp_SphBp[L]; 
	}
      }

      /* loop for L */
 
      for (L=0; L<=List_YOUSO[35]; L++){

	/****************************************************
                      \int jL(k*r)RL r^2 dr 
	****************************************************/

	for (Mul=0; Mul<List_YOUSO[34]; Mul++) SumTmp[Mul] = 0.0;

        /* Gauss-Legendre quadrature */

	for (i=0; i<GL_Mesh; i++){

	  r = RGL[i];
          sj = SphB[L][i];

	  tmp0 = r*r*GL_Weight[i]*sj;
	  for (Mul=0; Mul<List_YOUSO[34]; Mul++){
	    dum0 = PhiF(r, Projector_VNA[spe][L][Mul], Spe_VPS_RV[spe], Spe_Num_Mesh_VPS[spe]);   
	    SumTmp[Mul] += dum0*tmp0;
	  }
	}

	for (Mul=0; Mul<List_YOUSO[34]; Mul++){
	  Spe_VNA_Bessel[spe][L][Mul][kj] = 0.5*Dr*SumTmp[Mul];
	}

        GL_NormK[kj] = norm_k;

      } /* L */
    } /* kj */

    /* free SphB and SphBp */

    free(SumTmp);

    for(L=0; L<(List_YOUSO[35]+3); L++){ 
      free(SphB[L]);
    }
    free(SphB);

    for(L=0; L<(List_YOUSO[35]+3); L++){ 
      free(SphBp[L]);
    }
    free(SphBp);

    free(tmp_SphB);
    free(tmp_SphBp);

  } /* Lspe */

  /****************************************************
         regenerate radial grids in the k-space
         for the MPI calculation
  ****************************************************/

  for (kj=0; kj<GL_Mesh; kj++){
    kmin = Radial_kmin;
    kmax = PAO_Nkmax;
    Sk = kmax + kmin;
    Dk = kmax - kmin;
    norm_k = 0.50*(Dk*GL_Abscissae[kj] + Sk);
    GL_NormK[kj] = norm_k;
  }

  /***********************************************************
        sending and receiving of Spe_VNA_Bessel by MPI
  ***********************************************************/

  for (ID=0; ID<Num_Procs2; ID++){
    NumSpe = Species_End[ID] - Species_Top[ID] + 1;
    for (Lspe=0; Lspe<NumSpe; Lspe++){
      spe = Species_Top[ID] + Lspe;
      for (L=0; L<=List_YOUSO[35]; L++){
	for (Mul=0; Mul<List_YOUSO[34]; Mul++){
	  MPI_Bcast(&Spe_VNA_Bessel[spe][L][Mul][0],
		    GL_Mesh,MPI_DOUBLE,ID,mpi_comm_level1);
	}
      }
    }
  }

  /***********************************************************
                         elapsed time
  ***********************************************************/

  dtime(&TEtime);
}