1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
/**********************************************************************
FT_VNA.c:
FT_VNA.c is a subroutine to Fourier transform VNA potentials
Log of FT_VNA.c:
18/May/2004 Released by T.Ozaki
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "openmx_common.h"
#ifdef nompi
#include "mimic_mpi.h"
#else
#include "mpi.h"
#endif
void FT_VNA()
{
int numprocs,myid,ID,tag=999;
int count,NumSpe;
int L,i,j;
int Lspe,spe,GL,Mul;
double Sr,Dr,Sk,Dk,kmin,kmax;
double norm_k,h,dum0;
double xmin,xmax,x,r,sum;
double sj,sy,sjp,syp;
double RGL[GL_Mesh + 2];
double SumTmp;
double tmp0,tmp1;
double *tmp_SphB,*tmp_SphBp;
double TStime, TEtime;
MPI_Status stat;
MPI_Request request;
dtime(&TStime);
/* MPI */
MPI_Comm_size(mpi_comm_level1,&numprocs);
MPI_Comm_rank(mpi_comm_level1,&myid);
if (myid==Host_ID) printf("<FT_VNA> Fourier transform of VNA potentials\n");
/* allocate arrays */
tmp_SphB = (double*)malloc(sizeof(double)*3);
tmp_SphBp = (double*)malloc(sizeof(double)*3);
/* loop for Lspe */
for (Lspe=0; Lspe<MSpeciesNum; Lspe++){
spe = Species_Top[myid] + Lspe;
/****************************************************
\int jL(k*r)RL r^2 dr
****************************************************/
/* tabulation on Gauss-Legendre radial grid */
kmin = Radial_kmin;
kmax = PAO_Nkmax;
Sk = kmax + kmin;
Dk = kmax - kmin;
for (j=0; j<GL_Mesh; j++){
norm_k = 0.50*(Dk*GL_Abscissae[j] + Sk);
/**************************
trapezoidal rule
grid: r = x^2
dr = 2*x*dx
***************************/
xmin = sqrt(Spe_PAO_RV[spe][0]);
xmax = sqrt(Spe_Atom_Cut1[spe] + 0.5);
sum = 0.0;
h = (xmax - xmin)/(double)OneD_Grid;
for (i=0; i<=OneD_Grid; i++){
x = xmin + (double)i*h;
r = x*x;
Spherical_Bessel(norm_k*r,0,tmp_SphB,tmp_SphBp);
sj = tmp_SphB[0];
if (i==0 || i==OneD_Grid)
sum += r*r*x*sj*VNAF(spe,r);
else
sum += 2.0*r*r*x*sj*VNAF(spe,r);
}
sum = sum*h;
Spe_CrudeVNA_Bessel[spe][j] = sum;
GL_NormK[j] = norm_k;
}
}
/****************************************************
regenerate radial grids in the k-space
for the MPI calculation
****************************************************/
for (j=0; j<GL_Mesh; j++){
kmin = Radial_kmin;
kmax = PAO_Nkmax;
Sk = kmax + kmin;
Dk = kmax - kmin;
norm_k = 0.50*(Dk*GL_Abscissae[j] + Sk);
GL_NormK[j] = norm_k;
}
/***********************************************************
sending and receiving of Spe_CrudeVNA_Bessel by MPI
***********************************************************/
for (ID=0; ID<Num_Procs2; ID++){
NumSpe = Species_End[ID] - Species_Top[ID] + 1;
for (Lspe=0; Lspe<NumSpe; Lspe++){
spe = Species_Top[ID] + Lspe;
MPI_Bcast(&Spe_CrudeVNA_Bessel[spe][0],
GL_Mesh,MPI_DOUBLE,ID,mpi_comm_level1);
}
}
/* free arrays */
free(tmp_SphB);
free(tmp_SphBp);
/***********************************************************
elapsed time
***********************************************************/
dtime(&TEtime);
}
|