File: Find_ApproxFactN.c

package info (click to toggle)
openmx 3.2.4.dfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: lenny, squeeze
  • size: 62,572 kB
  • ctags: 2,684
  • sloc: ansic: 130,666; python: 876; makefile: 560; xml: 63; perl: 18; sh: 4
file content (284 lines) | stat: -rw-r--r-- 5,602 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/**********************************************************************
  Find_ApproxFactN.c

   Find_ApproxFactN.c is a subrutine to find the number of grids along 
   the a-, b-, and c-axes which satisies the required cutoff energy
   approximately.

  Log of Find_ApproxFactN.c:

     9/Dec./2006  Released by T.Ozaki

***********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include "openmx_common.h" 

#ifdef nompi
#include "mimic_mpi.h"
#else
#include "mpi.h"
#endif

#ifdef TRAN
#include "tran_prototypes.h"
#endif

int factorize(int num0, int N, int *fund, int *pow, int must );


void Find_ApproxFactN(double tv[4][4],double *GEcut,
                      int *Ng1,int *Ng2,int *Ng3,
                      double *A2, double *B2, double *C2)
{
  int i,iaxis;
  double fac,Ecut;
  int imin,imax;
  double tolfac=1.50;

  /* radix of FFT */
  int mustfact[3]; 
  int pow[4];
  int num,must[4];

  int  numprocs,myid;

  int numGrid0[3];
  double Ecut0[3];

  MPI_Comm_size(mpi_comm_level1,&numprocs);
  MPI_Comm_rank(mpi_comm_level1,&myid);

  numGrid0[0]= *Ng1;
  numGrid0[1]= *Ng2;
  numGrid0[2]= *Ng3;
  Ecut0[0] = *A2;
  Ecut0[1] = *B2;
  Ecut0[2] = *C2;

  /* set a divisible number by numprocs for Ng1 */
  if (MPI_tunedgrid_flag){
    must[0]=numprocs;
    must[1]=1;
    must[2]=1;
  }
  /* set an optimized number in one cpu for Ng1 */
  else{
    must[0]=1;
    must[1]=1;
    must[2]=1;
  }

  for (iaxis=0;iaxis<3;iaxis++) {

    if (2<=numGrid0[iaxis]) {

      for (num=numGrid0[iaxis]/2;;num++) {

	if ( factorize(num,NfundamentalNum,fundamentalNum,pow,must[iaxis]) ) {

	  fac = (double)num/(double)numGrid0[iaxis];
	  Ecut = Ecut0[iaxis] * fac*fac;

	  /*
          printf("%i %i %i %i %i %lf\n",num,pow[0],pow[1],pow[2],pow[3],Ecut);
	  */

	  if ( Ecut > *GEcut ) {
            numGrid0[iaxis]=num;
            Ecut0[iaxis] = Ecut;
            break;
	  }
	}

      }

    }

  }

  /* tune GridX */
  imin =0;
  for (i=1;i<3;i++) {
    if (Ecut0[imin] > Ecut0[i] ) imin=i;
  }
  imax =0;
  for (i=1;i<3;i++) {
    if (Ecut0[imax] < Ecut0[i] ) imax=i;
  }

  if (Ecut0[imax]/Ecut0[imin] > tolfac) { tolfac = Ecut0[imax]/Ecut0[imin]; }

  /* fine tuning */
  if ( (Ecut0[imax]/Ecut0[imin] > 1.03)){

    int Fnum=10;
    int FGrid[3][10];
    double FEcut[3][10];

    int maxnum[3];
    int inum;
    double score[10][10][10],minval;
    int i,j,k;
    int myid,numprocs;
    int must[3]; /* for factorize */

    MPI_Comm_size(mpi_comm_level1,&numprocs);
    MPI_Comm_rank(mpi_comm_level1,&myid);

    if (myid==Host_ID){    
      printf("<Find_ApproxFactN> diff. of Cutoff is too large. tune Cutoff(Ng)\n");
    }

    /* set a divisible number by numprocs for Ng1 */
    if (MPI_tunedgrid_flag){
      must[0]=numprocs;
      must[1]=1;
      must[2]=1;
    }
    /* set an optimized number in one cpu for Ng1 */
    else{
      must[0]=1;
      must[1]=1;
      must[2]=1;
    }

    /* find 1st- Fnum-th  Grid larger than numGrid */
    for (iaxis=0;iaxis<3;iaxis++) {
      inum=0;
      FGrid[iaxis][inum] = numGrid0[iaxis];
      FEcut[iaxis][inum] = Ecut0[iaxis];
      inum++; /* num. of grids found so far */

      for (num=numGrid0[iaxis]+1; ; num++) {

	if ( factorize(num,NfundamentalNum,fundamentalNum,pow,must[iaxis]) ) {
          fac = (double)num/(double)numGrid0[iaxis];
          Ecut = Ecut0[iaxis] * fac*fac;
          FGrid[iaxis][inum] = num;
	  FEcut[iaxis][inum] = Ecut;

	  if ( (inum+1)>=Fnum|| FEcut[iaxis][inum] > (*GEcut)*tolfac) {
	    maxnum[iaxis]=inum + 1;
	    break;
	  }
	  inum++;
        }
      }

      if (myid==Host_ID){    
        for(i=0;i<maxnum[iaxis];i++) {
	  printf("%f(%i) ",FEcut[iaxis][i],FGrid[iaxis][i]);
        }
        printf("\n");
      }
    }

    for (i=0;i<maxnum[0];i++) {
      for (j=0;j<maxnum[1];j++) {
        for (k=0;k<maxnum[2];k++) {
           score[i][j][k] = ( sqr( FEcut[0][i]-FEcut[1][j] ) + 
                   sqr( FEcut[0][i]-FEcut[2][k] ) + sqr( FEcut[1][j]-FEcut[2][k] ) );
        }
      }
    }
    minval=score[0][0][0];
    
    for (i=0;i<maxnum[0];i++) {
      for (j=0;j<maxnum[1];j++) {
        for (k=0;k<maxnum[2];k++) {
         /* printf("%i %i %i score=%lf\n",i,j,k,score[i][j][k]); */
          if (minval > score[i][j][k] ) { minval=score[i][j][k] ; }
        }
      }
    }

    for (i=0;i<maxnum[0];i++) {
      for (j=0;j<maxnum[1];j++) {
        for (k=0;k<maxnum[2];k++) {
          if ( fabs(minval-score[i][j][k])<1.0e-50 ) goto foundmin;
        }
      }
    }
     
foundmin:

    numGrid0[0]= FGrid[0][i];
    numGrid0[1]= FGrid[1][j];
    numGrid0[2]= FGrid[2][k];
    Ecut0[0] = FEcut[0][i];
    Ecut0[1] = FEcut[1][j];
    Ecut0[2] = FEcut[2][k];

  }

  *Ng1 = numGrid0[0];
  *Ng2 = numGrid0[1];
  *Ng3 = numGrid0[2];
  *A2 = Ecut0[0];
  *B2 = Ecut0[1];
  *C2 = Ecut0[2];

}



int factorize(int num0, int N, int *fund, int *pow, int must )
{
  int i;
  int a,b;
  int num;
  int ret;

  /* must exclude  division 0 */
  if (must==0)  return 0;

  if (must==1) {

    for (i=0;i<N;i++) {
      pow[i] = 0;
    }

  }
  else {
    num=num0%must;
    if ( num==0 ) {
      ret=factorize(  must, N, fund, pow, 1);
      if (ret==0) {
	return ret;
      }
    }
    else {
      return 0;
    }
  }

  num=num0/must ;
  for (i=0; i<N; i++) {
    while (1) {
      b = num%fund[i];

      if (b==0) {
	num /= fund[i];
	pow[i]++;
      }
      else {
	break;
      }
    }

  }

  if (num==1) {
    return num0;
  }
  else {
    return 0;
  }

}