1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "openmx_common.h"
#define S3J_0 1e-10
#define S3J_MAX_FACT 40
#define S3J_EQUAL(a,b) (fabs((a)-(b))<S3J_0)
#define S3J_MAX(a,b,c,ris) (((a)>(b)?(ris=(a)):(ris=(b)))>(c)?ris:(ris=(c)))
#define S3J_MIN(a,b,c,ris) (((a)<(b)?(ris=(a)):(ris=(b)))<(c)?ris:(ris=(c)))
static double Clebsch_Gordan(int j1, int m1,
int j2, int m2,
int j, int m);
static double s3j(double j1, double j2, double j3,
double m1, double m2, double m3);
double Gaunt(int l, int m,
int l1, int m1,
int l2, int m2)
{
/************************************************************
Ref. Eq.(3.7.73) in Modern Quantum Mechanics by J.J.Sakurai
************************************************************/
int Ls;
double tmp0,tmp1,tmp2,tmp3;
double result,cleb1,cleb2;
cleb1 = Clebsch_Gordan(l1,0,l2,0,l,0);
cleb2 = Clebsch_Gordan(l1,m1,l2,m2,l,m);
tmp0 = 2.0*(double)l1 + 1.0;
tmp1 = 2.0*(double)l2 + 1.0;
tmp2 = 4.0*PI*(2.0*(double)l + 1.0);
tmp3 = sqrt(tmp0*tmp1/tmp2);
result = tmp3*cleb1*cleb2;
return result;
}
double Clebsch_Gordan(int j1, int m1,
int j2, int m2,
int j, int m)
{
int esp;
double cgris;
esp=(int)(j1-j2+m);
if (!S3J_EQUAL(esp,j1-j2+m)) return 0;
if (esp%2==0) cgris=1.0;
else cgris=-1.0;
cgris*=sqrt(2*j+1)*s3j((double)j1,(double)j2,(double)j,
(double)m1,(double)m2,(double)(-m));
return cgris;
}
double s3j(double j1, double j2, double j3,
double m1, double m2, double m3)
{
/******************************************************************************
**************************************************************
This program was adopted from the following webpage by
T.Ozaki at Sep. 13 2002. T.Ozaki greatly thanks the original
author (Dr. Gusmeroli).
**************************************************************
http://www.ph.surrey.ac.uk/~phs3ps/cleb.html
The below is the original message.
Name: s3j
Evaluates 3j symbol
Author: Riccardo Gusmeroli (web.address@libero.it)
Notes:
- defining S3J_TEST enables the compilation of a very small test suite.
- the maximum allowed factorial is S3J_MAX_FACT (currently 25!).
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
( j1 j2 j3 )
( ) = delta(m1+m2+m3,0) * (-1)^(j1-j2-m3) *
( m1 m2 m3 )
+-
| (j1+j2-j3)! (j1-j2+j3)! (-j1+j2+j3)!
* | -------------------------------------- ...
|
+-
-+ 1/2
(j1-m1)! (j1+m1)! (j2-m2)! (j2+m2)! (j3-m3)! (j3+m3)! |
... ------------------------------------------------------- | *
(j1+j2+j3+1)! |
-+
+---
\ (-1)^k
* | ---------------------------------------------------------------------
/ k! (j1+j2-j3-k)! (j1-m1-k)! (j2+m2-k)! (j3-j2+m1+k)! (j3-j1-m2+k)!
+---
k
Where factorials must have non-negative integral values:
j1+j2-j3 >= 0 j1-j2+j3 >= 0 -j1+j2+j3 >= 0 j1+j2+j3+1 >= 0
k >= 0 j1+j2-j3-k >= 0 j1-m1-k >= 0 j2+m2-k >= 0
j3-j2+m1+k >= 0 j3-j1-m2+k >= 0
The 3j symbol is therefore non-null if
j1+j2 >= j3 (1)
j1+j3 >= j2 (2)
j2+j3 >= j1 (3)
and k values in the sum must be such that
k <= j1+j2-j3 (4) k >= 0 (7)
k <= j1-m1 (5) k >= -j3+j2-m1 (8)
k <= j2+m2 (6) k >= -j3+j1+m2 (9)
If no values of k satisfy the (4) to (9), the result is null
because the sum is null, otherwise one can find kmin < kmax
such that
kmin <= k <= kmax
(4) to (6) => kmin=MAX(j1+j2-j3, j1-m1, j2+m2 )
(7) to (9) => kmax=MIN(0, -j3+j2-m1, -j3+j1+m2 )
The condition kmin < kmax includes (1) to (3) because
(4) and (7) => (1)
(5) and (8) => (2)
(6) and (9) => (3)
Once the values of kmin and kmax are found,
the only "selection rule" is kmin<kmax.
******************************************************************************/
int k, kmin, kmax;
int jpm1, jmm1, jpm2, jmm2, jpm3, jmm3;
int j1pj2mj3, j3mj2pm1, j3mj1mm2;
double ris, mult, f[S3J_MAX_FACT];
f[0]=1.0;
mult=1.0;
for (k=1; k<S3J_MAX_FACT; ++k) {
f[k]=f[k-1]*mult;
mult+=1.0;
}
jpm1=(int)(j1+m1);
if (!S3J_EQUAL(jpm1,j1+m1)) return 0.0;
jpm2=(int)(j2+m2);
if (!S3J_EQUAL(jpm2,j2+m2)) return 0.0;
jpm3=(int)(j3+m3);
if (!S3J_EQUAL(jpm3,j3+m3)) return 0.0;
jmm1=(int)(j1-m1);
if (!S3J_EQUAL(jmm1,j1-m1)) return 0.0;
jmm2=(int)(j2-m2);
if (!S3J_EQUAL(jmm2,j2-m2)) return 0.0;
jmm3=(int)(j3-m3);
if (!S3J_EQUAL(jmm3,j3-m3)) return 0.0;
/* delta(m1+m2+m3,0) */
if ((jpm1-jmm1+jpm2-jmm2+jpm3-jmm3)!=0) return 0.0;
/* j1+j2-j3 = (j1+j2-j3) + (m1+m2+m3) = jpm1+jpm2-jmm3 */
j1pj2mj3=jpm1+jpm2-jmm3;
/* j3-j2+m1 = (j3-j2+m1) - (m1+m2+m3) = jmm3-jpm2 */
j3mj2pm1=jmm3-jpm2;
/* j3-j1-m2 = (j3-j1-m2) + (m1+m2+m3) = jpm3-jmm1 */
j3mj1mm2=jpm3-jmm1;
S3J_MAX(-j3mj2pm1, -j3mj1mm2, 0, kmin);
S3J_MIN(j1pj2mj3, jmm1, jpm2, kmax);
if (kmin>kmax) return 0.0;
ris=0.0;
if (kmin%2==0) mult=1.0;
else mult=-1.0;
for (k=kmin; k<=kmax; ++k) {
ris+=mult/(f[k]*f[j1pj2mj3-k]*f[jmm1-k]*f[jpm2-k]*f[j3mj2pm1+k]*f[j3mj1mm2+k]);
mult=-mult;
}
/* (-1)^(j1-j2-m3)=(-1)^(j1-j2-m3+m1+m2+m3)=(-1)^(jpm1-jmm2) */
if ((jpm1-jmm2)%2!=0) ris=-ris;
ris*=sqrt(f[j1pj2mj3]*f[jpm1-jmm2+jpm3]*f[-jmm1+jpm2+jpm3]*
f[jpm1]*f[jpm2]*f[jpm3]*f[jmm1]*f[jmm2]*f[jmm3]/
f[jpm1+jpm2+jpm3+1]);
return ris;
}
|