1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/**********************************************************************
Get_OneD_HS_Col.c:
Get_OneD_HS_Col.c is a subroutine to obtain an one-dimensionalized
matrix elements of Hamiltonian (overlap) for collinear calculations.
Log of Get_OneD_HS_Col.c:
29/Jan/2007 Released by T.Ozaki
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "openmx_common.h"
#ifdef nompi
#include "mimic_mpi.h"
#else
#include "mpi.h"
#endif
int Get_OneD_HS_Col(int set_flag, double ****RH, double *H1, int *MP,
int *order_GA, int *My_NZeros, int *is1, int *is2)
{
int i,j,k;
int MA_AN,GA_AN,LB_AN,GB_AN,AN;
int wanA,wanB,tnoA,tnoB,Anum,Bnum,NUM;
int num,tnum,num_orbitals;
int ID,myid,numprocs,tag=999;
int *ie1;
int *My_Matomnum;
double sum;
double Stime,Etime;
MPI_Status stat;
MPI_Request request;
/* MPI */
MPI_Comm_size(mpi_comm_level1,&numprocs);
MPI_Comm_rank(mpi_comm_level1,&myid);
MPI_Barrier(mpi_comm_level1);
/* allocation of arrays */
My_Matomnum = (int*)malloc(sizeof(int)*numprocs);
ie1 = (int*)malloc(sizeof(int)*numprocs);
/* find my total number of non-zero elements in myid */
My_NZeros[myid] = 0;
for (MA_AN=1; MA_AN<=Matomnum; MA_AN++){
GA_AN = M2G[MA_AN];
wanA = WhatSpecies[GA_AN];
tnoA = Spe_Total_CNO[wanA];
num = 0;
for (LB_AN=0; LB_AN<=FNAN[GA_AN]; LB_AN++){
GB_AN = natn[GA_AN][LB_AN];
wanB = WhatSpecies[GB_AN];
tnoB = Spe_Total_CNO[wanB];
num += tnoB;
}
My_NZeros[myid] += tnoA*num;
}
for (ID=0; ID<numprocs; ID++){
MPI_Bcast(&My_NZeros[ID],1,MPI_INT,ID,mpi_comm_level1);
}
tnum = 0;
for (ID=0; ID<numprocs; ID++){
tnum += My_NZeros[ID];
}
is1[0] = 0;
ie1[0] = My_NZeros[0] - 1;
for (ID=1; ID<numprocs; ID++){
is1[ID] = ie1[ID-1] + 1;
ie1[ID] = is1[ID] + My_NZeros[ID] - 1;
}
/* set is2 and order_GA */
My_Matomnum[myid] = Matomnum;
for (ID=0; ID<numprocs; ID++){
MPI_Bcast(&My_Matomnum[ID],1,MPI_INT,ID,mpi_comm_level1);
}
is2[0] = 1;
for (ID=1; ID<numprocs; ID++){
is2[ID] = is2[ID-1] + My_Matomnum[ID-1];
}
for (MA_AN=1; MA_AN<=Matomnum; MA_AN++){
order_GA[is2[myid]+MA_AN-1] = M2G[MA_AN];
}
for (ID=0; ID<numprocs; ID++){
MPI_Bcast(&order_GA[is2[ID]],My_Matomnum[ID],MPI_INT,ID,mpi_comm_level1);
}
/* set MP */
Anum = 1;
for (i=1; i<=atomnum; i++){
MP[i] = Anum;
wanA = WhatSpecies[i];
Anum += Spe_Total_CNO[wanA];
}
NUM = Anum - 1;
/* set H1 */
if (set_flag){
k = is1[myid];
for (MA_AN=1; MA_AN<=Matomnum; MA_AN++){
GA_AN = M2G[MA_AN];
wanA = WhatSpecies[GA_AN];
tnoA = Spe_Total_CNO[wanA];
for (LB_AN=0; LB_AN<=FNAN[GA_AN]; LB_AN++){
GB_AN = natn[GA_AN][LB_AN];
wanB = WhatSpecies[GB_AN];
tnoB = Spe_Total_CNO[wanB];
for (i=0; i<tnoA; i++){
for (j=0; j<tnoB; j++){
H1[k] = RH[MA_AN][LB_AN][i][j];
k++;
}
}
}
}
/* MPI H1 */
dtime(&Stime);
for (ID=0; ID<numprocs; ID++){
k = is1[ID];
MPI_Bcast(&H1[k], My_NZeros[ID], MPI_DOUBLE, ID, mpi_comm_level1);
}
dtime(&Etime);
/*
printf("myid=%2d time in Get_OneD_HS_Col (s) = %10.5f\n",myid,Etime-Stime);fflush(stdout);
*/
}
/* freeing of arrays */
free(ie1);
free(My_Matomnum);
/* return the size of H1 */
return tnum+1;
}
|