1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
/**********************************************************************
TRNA_Calc_GC_LorR.c:
TRAN_Calc_GC_LorR.c is a subroutine to calculate G_{C_L} or G_{C_R}
in the non-equilibrium case.
Log of TRAN_Calc_GC_LorR.c:
17/Dec/2005 Released by T.Ozaki, Taisuke Ozaki Copyright (C)
***********************************************************************/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#ifdef nompi
#include "mimic_mpi.h"
#else
#include <mpi.h>
#endif
#include "tran_prototypes.h"
#include "lapack_prototypes.h"
/*
* calculate GCLorR
* GCLorR (w) = GC(w) ( w^* SC - HC - \Sigma_LorR(w^*) ) GC(w)^*
*
*
* no implicit variables
*/
void TRAN_Calc_GC_LorR(
int iw_method, /* input */
dcomplex w, /* input */
double ChemP_e[2], /* input */
int nc, /* input */
int ne[2], /* input */
dcomplex *SigmaLorR, /* input */
dcomplex *GC, /* input */
dcomplex *HCC, /* input */
dcomplex *SCC, /* input */
dcomplex *v1, /* work, nc*nc */
dcomplex *GCLorR /* output */
)
#define GC_ref(i,j) GC[nc*((j)-1)+(i)-1]
#define SigmaLorR_ref(i,j) SigmaLorR[nc*((j)-1)+(i)-1]
#define v1_ref(i,j) v1[nc*((j)-1)+(i)-1]
#define GCLorR_ref(i,j) GCLorR[nc*((j)-1)+(i)-1]
#define HCC_ref(i,j) HCC[nc*((j)-1)+(i)-1]
#define SCC_ref(i,j) SCC[nc*((j)-1)+(i)-1]
{
int i,j;
int full_flag;
int side;
dcomplex alpha,beta;
alpha.r = 1.0;
alpha.i = 0.0;
beta.r = 0.0;
beta.i = 0.0;
/* find a flag for how the H and S are divided */
if (iw_method==3){
if (ChemP_e[0]<ChemP_e[1])
full_flag = 1;
else
full_flag = 0;
}
else if (iw_method==4){
if (ChemP_e[1]<ChemP_e[0])
full_flag = 1;
else
full_flag = 0;
}
if ( fabs(ChemP_e[1]-ChemP_e[0])<1.0e-50 ) full_flag = 2;
/* GCLorR = -(\Sigma_LorR(w))^* */
for (j=1; j<=nc; j++) {
for (i=1; i<=nc; i++) {
GCLorR_ref(i,j).r = -SigmaLorR_ref(i,j).r;
GCLorR_ref(i,j).i = SigmaLorR_ref(i,j).i;
}
}
/* in case of the left side */
if (iw_method==3){
for (j=1; j<=(nc-ne[1]); j++) {
for (i=1; i<=(nc-ne[1]); i++) {
GCLorR_ref(i,j).r += w.r*SCC_ref(i,j).r - w.i*SCC_ref(i,j).i - HCC_ref(i,j).r;
GCLorR_ref(i,j).i += -w.i*SCC_ref(i,j).r - w.r*SCC_ref(i,j).i + HCC_ref(i,j).i;
}
}
}
/* in case of the right side */
else if (iw_method==4){
for (j=(ne[0]+1); j<=nc; j++) {
for (i=(ne[0]+1); i<=nc; i++) {
GCLorR_ref(i,j).r += w.r*SCC_ref(i,j).r - w.i*SCC_ref(i,j).i - HCC_ref(i,j).r;
GCLorR_ref(i,j).i += -w.i*SCC_ref(i,j).r - w.r*SCC_ref(i,j).i + HCC_ref(i,j).i;
}
}
}
/* correction of the central region */
if (full_flag==0){
for (j=(ne[0]+1); j<=(nc-ne[1]); j++) {
for (i=(ne[0]+1); i<=(nc-ne[1]); i++) {
GCLorR_ref(i,j).r -= w.r*SCC_ref(i,j).r - w.i*SCC_ref(i,j).i - HCC_ref(i,j).r;
GCLorR_ref(i,j).i -= -w.i*SCC_ref(i,j).r - w.r*SCC_ref(i,j).i + HCC_ref(i,j).i;
}
}
}
else if (full_flag==2){
for (j=(ne[0]+1); j<=(nc-ne[1]); j++) {
for (i=(ne[0]+1); i<=(nc-ne[1]); i++) {
GCLorR_ref(i,j).r -= 0.5*( w.r*SCC_ref(i,j).r - w.i*SCC_ref(i,j).i - HCC_ref(i,j).r );
GCLorR_ref(i,j).i -= 0.5*( -w.i*SCC_ref(i,j).r - w.r*SCC_ref(i,j).i + HCC_ref(i,j).i );
}
}
}
/* GC(w) ( w^* SC - HC -2 \Sigma_LorR(w^*) ) */
F77_NAME(zgemm,ZGEMM)("N","N",&nc,&nc,&nc,&alpha, GC, &nc, GCLorR, &nc, &beta, v1, &nc);
/* do complex conjugate */
for (j=1;j<=nc;j++) {
for (i=1;i<=nc;i++) {
GC_ref(i,j).i = -GC_ref(i,j).i;
}
}
/* GC(w) ( w^* SC - HC -2 \Sigma_LorR(w^*) ) GC(w)^* */
F77_NAME(zgemm,ZGEMM)("N","N",&nc,&nc,&nc,&alpha, v1, &nc, GC, &nc, &beta, GCLorR, &nc);
/* again do complex conjugate */
for (j=1;j<=nc;j++) {
for (i=1;i<=nc;i++) {
GC_ref(i,j).i = -GC_ref(i,j).i;
}
}
}
|