File: TRAN_Poisson.c

package info (click to toggle)
openmx 3.2.4.dfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: lenny, squeeze
  • size: 62,572 kB
  • ctags: 2,684
  • sloc: ansic: 130,666; python: 876; makefile: 560; xml: 63; perl: 18; sh: 4
file content (452 lines) | stat: -rw-r--r-- 11,752 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/**********************************************************************
  Poisson.c:

     Poisson.c is a subrutine to solve Poisson's equation using
     fast Fourier transformation.

  Log of Poisson.c:

     22/Nov/2001  Released by T.Ozaki

***********************************************************************/

#define  measure_time   0

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "openmx_common.h"


#ifdef nompi
#include "mimic_mpi.h"
#else
#include <mpi.h>
#endif

#include "tran_prototypes.h"
#include "tran_variables.h"


#ifdef fftw2 
#include <fftw.h>
#else
#include <fftw3.h> 
#endif

/* input: Density_Grid (-ADensity_Grid )
   or input: ReV1, ImV1  ( which are FFT of Density_Grid (-ADensity_Grid ) )
   work: ReV2, ImV2
   output: dVHart_Grid = rho(G)/G^2 

   fft_charge_flag=1:   density_matrix mixing
   fft_charge_flag=0:   k-transformed Density_Grid mixing
*/



double TRAN_Poisson(
                    int fft_charge_flag,
		    double ***ReV1, double ***ImV1,
		    double ***ReV2, double ***ImV2)
     /*#define grid_l_ref(i,j,k) ( (i)*Ngrid2*(l3l[1]-l3l[0]+1)+(j)*(l3l[1]-l3l[0]+1)+(k)-l3l[0] )
      *#define grid_r_ref(i,j,k) ( (i)*Ngrid2*(l3r[1]-l3r[0]+1)+(j)*(l3r[1]-l3r[0]+1)+(k)-l3r[0] )
      */
{ 
  static int ct_AN,n1,n2,n3,k1,k2,k3,kk2,N3[4];
  static int Cwan,NO0,NO1,Rn,N,Hwan,i,j;
  static int nn0,nn1,nnn1,MN,MN0,MN1,MN2;
  static double time0;
  static int h_AN,Gh_AN,Rnh,spin,Nc,GNc,GN,Nh,Nog;
  static double tmp0,tmp1,sk1,sk2,sk3,tot_den;
  static double x,y,z,Gx,Gy,Gz,Eden[2],DenA,G2;
  static double ReTmp,ImTmp,c_coe,p_coe;
  static double *tmp_array0;
  static double *tmp_array1;
  static double TStime,TEtime;
  static int numprocs,myid,tag=999,ID;

  /* TRAN extension */
  fftw_complex  *fftin, *fftout;
  fftw_plan p; 
  int ix0,ixlp1; 
  int l1l[2], l1r[2];
  double *rev, *imv;


  MPI_Status stat;
  MPI_Request request;

  MPI_Comm_size(mpi_comm_level1,&numprocs);
  MPI_Comm_rank(mpi_comm_level1,&myid);

  if (myid==Host_ID) printf("<TRAN_Poisson>  Poisson's equation using FFT...\n");

  dtime(&TStime);

#if 0
  {
    double R[4];
    R[1]=0.0; R[2]=0.0; R[3]=0.0;
    TRAN_Print_Grid_Cell0("zCharge_Density", Grid_Origin, gtv,
			  Ngrid1,Ngrid2, 0,Ngrid3-1, R,
			  My_Cell0, 
			  Density_Grid[0]);

  }
  {
    double R[4];
    double *v;
    int i;
    R[1]=0.0; R[2]=0.0; R[3]=0.0;
    v= (double*)malloc(sizeof(double)*Ngrid1*Ngrid2*Ngrid3);
    for (i=0;i< Ngrid1*Ngrid2*Ngrid3; i++) {
      v[i]= Density_Grid[0][i]+Density_Grid[1][i]-ADensity_Grid[i]; 
    }
    TRAN_Print_Grid_Cell0("zCharge_DensitySum", Grid_Origin, gtv,
			  Ngrid1,Ngrid2, 0,Ngrid3-1, R,
			  My_Cell0,
			  v);
    free(v);

  }
#endif

  /****************************************************
                 FFT of charge density 
  ****************************************************/

  if (fft_charge_flag==1) FFT_Density(0,ReV1,ImV1,ReV2,ImV2);

#ifdef DEBUG 
  /*debug*/
  { 
    char name[100];
    sprintf(name,"ReV20.%d",myid);
    TRAN_Print_Grid_Startv(name,  Ngrid1,My_NGrid2_Poisson, Ngrid3,Start_Grid2[myid], ReV2);
    sprintf(name,"ImV20.%d",myid);
    TRAN_Print_Grid_Startv(name,  Ngrid1,My_NGrid2_Poisson,Ngrid3,Start_Grid2[myid],  ImV2);
  }
#endif




  /****************************************************
                       4*PI/G2/N^3
  ****************************************************/

  /************************
     x -> k,  factor=1/N 
  ************************/

  tmp0 = 4.0*PI/(double)Ngrid1/(double)Ngrid2/(double)Ngrid3;

  for (k2=0; k2<My_NGrid2_Poisson; k2++){

    kk2 = k2 + Start_Grid2[myid];

    if (kk2<Ngrid2/2) sk2 = (double)kk2;
    else              sk2 = (double)(kk2 - Ngrid2);

    for (k1=0; k1<Ngrid1; k1++){

      if (k1<Ngrid1/2) sk1 = (double)k1;
      else             sk1 = (double)(k1 - Ngrid1);

      for (k3=0; k3<Ngrid3; k3++){

        if (k3<Ngrid3/2) sk3 = (double)k3;
        else             sk3 = (double)(k3 - Ngrid3);

        Gx = sk1*rtv[1][1] + sk2*rtv[2][1] + sk3*rtv[3][1];
        Gy = sk1*rtv[1][2] + sk2*rtv[2][2] + sk3*rtv[3][2]; 
        Gz = sk1*rtv[1][3] + sk2*rtv[2][3] + sk3*rtv[3][3];
        G2 = Gx*Gx + Gy*Gy + Gz*Gz;

        if (k1==0 && kk2==0 && k3==0){
          ReV2[k2][k1][k3] = 0.0;
          ImV2[k2][k1][k3] = 0.0;
        }
        else{
          ReV2[k2][k1][k3] = tmp0*ReV2[k2][k1][k3]/G2;
          ImV2[k2][k1][k3] = tmp0*ImV2[k2][k1][k3]/G2; 
        }
      }
    }
  }

  /****************************************************
   *   TRAN extension 
   ****************************************************/

  /* now (ReV2,ImV2) = Hartree potential(kx,ky,kz) */

  /* factor=1, in kx->x */

#ifdef fftw2
  fftin =(fftw_complex*)malloc(sizeof(fftw_complex)*Ngrid1);
  fftout=(fftw_complex*)malloc(sizeof(fftw_complex)*Ngrid1);
  p = fftw_create_plan(Ngrid1,1,FFTW_ESTIMATE);
#else
  fftin =fftw_malloc(sizeof(fftw_complex)*Ngrid1);
  fftout=fftw_malloc(sizeof(fftw_complex)*Ngrid1);
  p = fftw_plan_dft_1d(Ngrid1,fftin,fftout,1,FFTW_ESTIMATE);
#endif

  
  /*parallel global: k2  0:Ngrid2-1 */
  /*parallel local: k2  0:My_NGrid2_Poisson-1 */
  /*parallel local_to_global   k2 = kk2 + Start_Grid2[myid]  */
  for (k2=0;k2<My_NGrid2_Poisson ;k2++) {
    for (k3=0;k3<Ngrid3;k3++) {
      
      for (k1=0;k1<Ngrid1;k1++) {

#ifdef fftw2
        c_re(fftin[k1]) = ReV2[k2][k1][k3];
        c_im(fftin[k1]) = ImV2[k2][k1][k3];
#else
        fftin[k1][0] = ReV2[k2][k1][k3];
        fftin[k1][1] = ImV2[k2][k1][k3];
#endif

      }

#ifdef fftw2
      fftw_one(p, fftin, fftout); 
#else
      fftw_execute(p); 
#endif

      for (k1=0;k1<Ngrid1;k1++) {

#ifdef fftw2
        ReV2[k2][k1][k3] = c_re(fftout[k1]);
        ImV2[k2][k1][k3] = c_im(fftout[k1]);
#else
        ReV2[k2][k1][k3] = fftout[k1][0];
        ImV2[k2][k1][k3] = fftout[k1][1];
#endif

      }
    }
  }

  fftw_destroy_plan(p);

  /* now, (ReV2,ImV2)=Hartree potential(x,ky,kz) */

  /* boundary */

  l1l[0]=0;
  l1l[1]=TRAN_grid_bound[0]; 
  l1r[0]=TRAN_grid_bound[1];
  l1r[1]=Ngrid1-1; 

  ix0 =   TRAN_grid_bound[0];
  ixlp1 = TRAN_grid_bound[1];

  /*
   * V_e(x) given
   *
   * V_c(x) <= solved by rho/ (G^2) 
   *
   *  d^2/dx^2 V(x) = rho(x), linear equation
   *  d^2/dx^2 (VH(x) + dVH(x)) = ( rho(x) +  0 )
   *
   *  d^2/dx^2 VH(x) = rho(x) , solved via FFT
   *  d^2/dx^2 dVH(x) =0 with boundary condition, V_e(x)-V_c(x) at x=x_0 and x_(l+1)   
   *
   *
   * add correction,dVH(x), to the region x=[ix0+1:ixlp1-1]  
   */

  rev = (double*)malloc(sizeof(double)*Ngrid1);
  imv = (double*)malloc(sizeof(double)*Ngrid1);

#define grid_l_ref(i,j,k) ( ((i)-l1l[0])*Ngrid2*Ngrid3 + (j)*Ngrid3+ (k) )
#define grid_r_ref(i,j,k) ( ((i)-l1r[0])*Ngrid2*Ngrid3 + (j)*Ngrid3+ (k) )


  /*parallel global: kk2  0:Ngrid2-1 */
  /*parallel local: k2  0:My_NGrid2_Poisson-1 */
  /*parallel local_to_global   kk2 = k2 + Start_Grid2[myid]  */
  for (k2=0;k2<My_NGrid2_Poisson;k2++) {
    kk2 = k2 + Start_Grid2[myid];
    for (k3=0;k3<Ngrid3;k3++) {
      if (k3==0 && kk2==0) {  /* G_para==0 */
        for (k1=0;k1<Ngrid1;k1++) { rev[k1]=ReV2[k2][k1][k3]; imv[k1]=ImV2[k2][k1][k3]; }
	TRAN_Calc_VHartree_G0(
			      ElectrodedVHart_Grid_c[0][grid_l_ref(ix0,kk2,k3)],     /* (x,ky,kz), left edge */
			      ElectrodedVHart_Grid_c[1][grid_r_ref(ixlp1,kk2,k3)],   /* right edge           */
			      ReV2[k2][ix0][k3], ImV2[k2][ix0][k3],                  /* x0,ky,kz             */
			      ReV2[k2][ixlp1][k3], ImV2[k2][ixlp1][k3],              /* x_(l+1),ky,kz}       */
			      ix0, ixlp1, gtv[1],
			      rev, imv  /* output */
			      );
        for (k1=0;k1<Ngrid1;k1++) { ReV2[k2][k1][k3]=rev[k1]; ImV2[k2][k1][k3]=imv[k1]; }

      }
      else {         /* G_para .ne.0 */
        for (k1=0;k1<Ngrid1;k1++) { rev[k1]=ReV2[k2][k1][k3]; imv[k1]=ImV2[k2][k1][k3]; }

	TRAN_Calc_VHartree_Gnon0(
				 kk2,k3, ix0, ixlp1,gtv,
				 ReV2[k2][ix0][k3],ImV2[k2][ix0][k3],   /* x0,ky,kz */
				 ReV2[k2][ixlp1][k3], ImV2[k2][ixlp1][k3], /* x_(l+1),ky,kz */
				 ElectrodedVHart_Grid_c[0][grid_l_ref(ix0,kk2,k3)], /* (x,ky,kz) */
				 ElectrodedVHart_Grid_c[1][grid_r_ref(ixlp1,kk2,k3) ],
				 rev, imv  /* output */
				 );
        for (k1=0;k1<Ngrid1;k1++) { ReV2[k2][k1][k3]=rev[k1]; ImV2[k2][k1][k3]=imv[k1]; }
            
      }
    }
  }
 
  free(imv);
  free(rev);

#ifdef DEBUG 
  /*debug*/
  {
    char name[100];
    sprintf(name,"ReV2b.%d",myid);
    TRAN_Print_Grid_Startv(name,  Ngrid1,My_NGrid2_Poisson, Ngrid3,Start_Grid2[myid], ReV2);
    sprintf(name,"ImV2b.%d",myid);
    TRAN_Print_Grid_Startv(name,  Ngrid1,My_NGrid2_Poisson,Ngrid3,Start_Grid2[myid],  ImV2);
  }
#endif


  /* overwrite  ElectrodedVHart_Grid_c */
  /* (ReV2,ImV2), z=[0:TRAN_grid_bound[0]], [TRAN_grid_bound[1]:Ngrid3-1]  <= ElectrodedVHart_Grid_c */
  /* global 0:Ngrid2-1 */
  /* local  0:My_NGrid2_Poisson-1 */
  /* local_to_global   k2 = kk2 + Start_Grid2[myid]  */ 
  TRAN_Overwrite_V2(Ngrid1,Ngrid2,Ngrid3, TRAN_grid_bound,My_NGrid2_Poisson, Start_Grid2[myid], 
		    ElectrodedVHart_Grid_c,
		    ReV2, ImV2 ); /* output */

#ifdef DEBUG
  /*debug*/
  {  char name[100];
  sprintf(name,"ReV2c.%d",myid);
  TRAN_Print_Grid_Startv(name,  Ngrid1,My_NGrid2_Poisson,Ngrid3,Start_Grid2[myid], ReV2);
  sprintf(name,"ImV2c.%d",myid);
  TRAN_Print_Grid_Startv(name,  Ngrid1,My_NGrid2_Poisson,Ngrid3,Start_Grid2[myid], ImV2);
  }
#endif


  /*  now (ReV2, ImV2) is a smooth function */
  /* (ReV2,ImV2)=Hartree potential(x,ky,kz) with effects of boundary condition */

  {
    /* (kx,ky,z) -> (kx,ky,kz) */

#ifdef fftw2
    p = fftw_create_plan(Ngrid1, -1, FFTW_ESTIMATE);
#else
    p = fftw_plan_dft_1d(Ngrid1,fftin,fftout,-1,FFTW_ESTIMATE);
#endif

    tmp0=1.0/(double)Ngrid1;  
    for (k3=0;k3<Ngrid3;k3++) {
      /* global k2 0:Ngrid2-1 */
      /* local  k2  0:My_NGrid2_Poisson-1 */
      /* local_to_global k2 = k2+ Start_Grid2[myid] */
      for (k2=0;k2<My_NGrid2_Poisson;k2++) {

	for (k1=0;k1<Ngrid1;k1++) {

#ifdef fftw2
	  c_re(fftin[k1]) = ReV2[k2][k1][k3];
	  c_im(fftin[k1]) = ImV2[k2][k1][k3];
#else
	  fftin[k1][0]= ReV2[k2][k1][k3];
	  fftin[k1][1]= ImV2[k2][k1][k3];
#endif

	}
#if 0
        {
	  printf("fftin(%d)->", Ngrid1); 
	  for (k1=0;k1<Ngrid2;k1++) { printf("%lf ",fftin[k1][0]); } printf("\n");
        }
#endif

#ifdef fftw2
	fftw_one(p, fftin, fftout);
#else
	fftw_execute(p);
#endif

#if 0
        {
	  printf("fftout(%d)->", Ngrid1); 
	  for (k1=0;k1<Ngrid2;k1++) { printf("%lf ",fftout[k1][0]); } printf("\n");
        }
#endif

	for (k1=0;k1<Ngrid1;k1++) {

#ifdef fftw2
	  ReV2[k2][k1][k3]=c_re(fftout[k1])*tmp0;
	  ImV2[k2][k1][k3]=c_im(fftout[k1])*tmp0;
#else
	  ReV2[k2][k1][k3]=fftout[k1][0]*tmp0;
	  ImV2[k2][k1][k3]=fftout[k1][1]*tmp0;
#endif

	}
      }
    }

    fftw_destroy_plan(p);

  }

  /* (ReV2,ImV2)=Hartree potential(kx,ky,kz) with effects of boundary condition */

#if 0
  /*debug*/
  { int i; double R[4];  for (i=1;i<=3;i++) R[i]=0.0;
  TRAN_Print_Grid_v("ReV2d", Grid_Origin,gtv, Ngrid1,Ngrid2, 0,Ngrid3-1, R, ReV2);
  TRAN_Print_Grid_v("ImV2d", Grid_Origin,gtv, Ngrid1,Ngrid2, 0,Ngrid3-1, R, ImV2);
  }
#endif

#ifdef fftw2
  free(fftout);
  free(fftin);
#else
  fftw_free(fftout);
  fftw_free(fftin);
#endif


  /****************************************************
        find the Hartree potential in real space
  ****************************************************/

  Get_Value_inReal(0,ReV2,ImV2,ReV1,ImV1,dVHart_Grid,dVHart_Grid); 

#ifdef DEBUG
  {
    int i; double R[4];  for (i=1;i<=3;i++) R[i]=0.0;
    TRAN_Print_Grid_Cell0( "dVHart_Grid", Grid_Origin,gtv, Ngrid1,Ngrid2, 0,Ngrid3-1, R,
			   My_Cell0, dVHart_Grid);
  }

#endif

  /* for time */

  dtime(&TEtime);
  time0 = TEtime - TStime;
  return time0;
}