1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#ifdef nompi
#include "mimic_mpi.h"
#else
#include <mpi.h>
#endif
#include "tran_prototypes.h"
#include "tran_variables.h"
/*****************************************
purpose:
construct H00 and H01 to make surface green function
-------------------------------------------------------
explanation:
atv_ijk[Rn][1..3] has index to the supercell
Rn==0, atv_ijk[Rn][1..3]=0 => means the same cell => S00
atv_ijk[Rn][1]=1 or -1 means the overlap to the nearest neighbor
cell in the direction of the electrode
1 or -1 => S01
assuming atv_ijk[Rn][1]=-1,0 or 1
---------------------------------------------------------
output
double S00_e, S01_e, H00_e, H01_e,
***********************************************/
#define S00_ref(i,j) ( ((j)-1)*NUM+(i)-1 )
void TRAN_Set_SurfOverlap( MPI_Comm comm1,
char *position,
double k2,
double k3 )
{
int NUM,n2;
int Anum, Bnum, wanA, tnoA;
int i,j,k;
int GA_AN;
int GB_AN, LB_AN,wanB, tnoB,Rn;
int l1,l2,l3;
int direction,iside;
double si,co,kRn;
double s,h[10];
static double epscutoff=1.0e-8;
int *MP;
/*debug */
char msg[100];
/*end debug */
/*
printf("<TRAN_Set_SurfOverlap, direction=%s>\n",position);
*/
/* position -> direction */
if ( strcasecmp(position,"left")==0) {
direction = -1;
iside = 0;
}
else if ( strcasecmp(position,"right")==0) {
direction = 1;
iside = 1;
}
/* set MP */
TRAN_Set_MP(0, atomnum_e[iside], WhatSpecies_e[iside], Spe_Total_CNO_e[iside], &NUM, MP);
MP = (int*)malloc(sizeof(int)*(NUM+1));
TRAN_Set_MP(1, atomnum_e[iside], WhatSpecies_e[iside], Spe_Total_CNO_e[iside], &NUM, MP);
n2 = NUM + 1;
for (i=0; i<n2*n2; i++){
S00_e[iside][i].r = 0.0;
S00_e[iside][i].i = 0.0;
S01_e[iside][i].r = 0.0;
S01_e[iside][i].i = 0.0;
}
for (k=0; k<=SpinP_switch_e[iside]; k++) {
for (i=0; i<n2*n2; i++){
H00_e[iside][k][i].r = 0.0;
H00_e[iside][k][i].i = 0.0;
H01_e[iside][k][i].r = 0.0;
H01_e[iside][k][i].i = 0.0;
}
}
for (GA_AN=1; GA_AN<=atomnum_e[iside]; GA_AN++){
wanA = WhatSpecies_e[iside][GA_AN];
tnoA = Spe_Total_CNO_e[iside][wanA];
Anum = MP[GA_AN];
for (LB_AN=0; LB_AN<=FNAN_e[iside][GA_AN]; LB_AN++){
GB_AN = natn_e[iside][GA_AN][LB_AN];
Rn = ncn_e[iside][GA_AN][LB_AN];
wanB = WhatSpecies_e[iside][GB_AN];
tnoB = Spe_Total_CNO_e[iside][wanB];
Bnum = MP[GB_AN];
l1 = atv_ijk_e[iside][Rn][1];
l2 = atv_ijk_e[iside][Rn][2];
l3 = atv_ijk_e[iside][Rn][3];
kRn = k2*(double)l2 + k3*(double)l3;
si = sin(2.0*PI*kRn);
co = cos(2.0*PI*kRn);
if (l1==0) {
for (i=0; i<tnoA; i++){
for (j=0; j<tnoB; j++){
S00_e[iside][S00_ref(Anum+i,Bnum+j)].r += co*OLP_e[iside][0][GA_AN][LB_AN][i][j];
S00_e[iside][S00_ref(Anum+i,Bnum+j)].i += si*OLP_e[iside][0][GA_AN][LB_AN][i][j];
for (k=0; k<=SpinP_switch_e[iside]; k++ ){
H00_e[iside][k][S00_ref(Anum+i,Bnum+j)].r += co*H_e[iside][k][GA_AN][LB_AN][i][j];
H00_e[iside][k][S00_ref(Anum+i,Bnum+j)].i += si*H_e[iside][k][GA_AN][LB_AN][i][j];
}
}
}
}
if (l1==direction) {
for (i=0; i<tnoA; i++){
for (j=0; j<tnoB; j++){
S01_e[iside][S00_ref(Anum+i,Bnum+j)].r += co*OLP_e[iside][0][GA_AN][LB_AN][i][j];
S01_e[iside][S00_ref(Anum+i,Bnum+j)].i += si*OLP_e[iside][0][GA_AN][LB_AN][i][j];
for (k=0; k<=SpinP_switch_e[iside]; k++ ){
H01_e[iside][k][S00_ref(Anum+i,Bnum+j)].r += co*H_e[iside][k][GA_AN][LB_AN][i][j];
H01_e[iside][k][S00_ref(Anum+i,Bnum+j)].i += si*H_e[iside][k][GA_AN][LB_AN][i][j];
}
}
}
}
}
} /* GA_AN */
/* free arrays */
free(MP);
}
|