1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/**********************************************************************
XC_CA_LSDA.c:
XC_CA_LSDA is a subroutine to calculate an exchange-
correlation potential for a given density "den" by the local
spin density approximation, which is based on the original works
by Ceperly and Alder and parametrized by Perdew and Zunger.
Log of XC_CA_LSDA.c:
22/Nov/2001 Released by T.Ozaki
***********************************************************************/
#include <stdio.h>
#include <math.h>
#include "openmx_common.h"
void XC_CA_LSDA(double den0, double den1, double XC[2],int P_switch)
{
/****************************************************
P_switch:
0 \epsilon_XC (Exc, XC energy density)
1 \mu_XC (Vxc, XC potential)
2 \epsilon_XC - \mu_XC (Exc-Vxc)
****************************************************/
double dum,rs,coe,tden,min_den;
double Vxc,Ex,Ec,dEx,dEc,Exc,dExc;
double ExP,EcP,dExP,dEcP;
double ExF,EcF,dExF,dEcF;
double zeta,fzeta,dfzeta;
double tmp0,tmp1,tmp2;
double z0,z1,z02,z04,z12,z14;
/****************************************************
Non-relativisic formalism
****************************************************/
/****************************************************
total density (tden) = den0 + den1
zeta = (den0-den1)/tden
rs = pow(3.0/4.0/PI,1.0/3.0)*tden^{-1/3}
*****************************************************/
min_den = 1.0e-15;
tden = den0 + den1;
if (tden<min_den){
XC[0] = 0.0;
XC[1] = 0.0;
}
else{
zeta = (den0 - den1)/tden;
if (1.0<zeta) zeta = 1.0 - min_den;
if (zeta<-1.0) zeta = -1.0 + min_den;
coe = 0.6203504908994; /* pow(3.0/4.0/PI,1.0/3.0); */
if (tden<min_den)
rs = 62035.04908994; /* coe*pow(1.0e-15,-1.0/3.0); */
else
rs = coe*pow(tden,-0.3333333333333333333);
/*****************************************************
exchange energy density for the para magnetic state
ExP = -3/4*(3/pi)^(1/3)*tden^{1/3}
= -3/4*(9/4/pi/pi)^(1/3)/rs
= -0.458165293632163/rs
*****************************************************/
tmp0 = 0.458165293632163/rs;
ExP = -tmp0;
dExP = tmp0/rs;
/*****************************************************
exchange energy density for the ferro magnetic state
ExF = 2^(1/3)*ExP
= 1.25992104989487*ExP
*****************************************************/
ExF = 1.25992104989487*ExP;
dExF = 1.25992104989487*dExP;
/*****************************************************
correlation energy density for the para magnetic state
1<=rs
EcP = -0.1423/(1+1.0529*sqrt(rs) + 0.3334*rs)
0<=rs<=1
EcP = 0.0311*ln(rs)-0.048+0.0020*rs*ln(rs)-0.0116*rs
correlation energy density for the ferro magnetic state
1<=rs
EcF = -0.0843/(1+1.3981*sqrt(rs) + 0.2611*rs)
0<=rs<=1
EcF = 0.01555*ln(rs)-0.0269+0.0007*rs*ln(rs)-0.0048*rs
*****************************************************/
if (1.0<=rs){
tmp0 = sqrt(rs);
dum = (1.0 + 1.0529*tmp0 + 0.3334*rs);
tmp1 = 0.1423/dum;
EcP = -tmp1;
dEcP = tmp1/dum*(0.52645/tmp0 + 0.3334);
dum = (1.0 + 1.3981*tmp0 + 0.2611*rs);
tmp1 = 0.0843/dum;
EcF = -tmp1;
dEcF = tmp1/dum*(0.69905/tmp0 + 0.2611);
}
else{
tmp0 = log(rs);
EcP = -0.0480 + 0.0311*tmp0 + rs*(0.0020*tmp0 - 0.0116);
dEcP = 0.0311/rs + 0.0020*tmp0 - 0.0096;
EcF = -0.0269 + 0.01555*tmp0 + rs*(0.0007*tmp0 - 0.0048);
dEcF = 0.01555/rs + 0.0007*tmp0 - 0.0041;
}
if (P_switch==0){
/*****************************************************
z0 = (1 + zeta)^{4/3}
z1 = (1 - zeta)^{4/3}
fzeta = (z0 + z1 - 2)/(2*(2^{1/3}-1))
= 1.92366105093154*(z0 + z1 - 2)
*****************************************************/
z0 = pow(1.0+zeta,1.33333333333333333);
z1 = pow(1.0-zeta,1.33333333333333333);
fzeta = 1.92366105093154*(z0 + z1 - 2.0);
/*****************************************************
exchange-correration energy density
Ex = ExP + (ExF - ExP)*fzeta
Ec = EcP + (EcF - EcP)*fzeta
Exc = Ex + Ec
= ExP + EcP + (ExF + EcF - ExP - EcP)*fzeta
*****************************************************/
Exc = ExP + EcP + (ExF + EcF - ExP - EcP)*fzeta;
XC[0] = Exc;
XC[1] = Exc;
}
else if (P_switch==1){
/*****************************************************
z0 = (1 + zeta)^{1/3}
z1 = (1 - zeta)^{1/3}
fzeta = (z0^4 + z1^4 - 2)/(2*(2^{1/3}-1))
= 1.92366105093154*(z0^4 + z1^4 - 2)
dfzeta = 2.56488140124205*(z0 - z1)
*****************************************************/
z0 = pow(1.0+zeta,0.33333333333333333);
z1 = pow(1.0-zeta,0.33333333333333333);
z02 = z0*z0;
z04 = z02*z02;
z12 = z1*z1;
z14 = z12*z12;
fzeta = 1.92366105093154*(z04 + z14 - 2.0);
dfzeta = 2.56488140124205*(z0 - z1);
/*****************************************************
exchange-correration potential
Vxc+- = Exc + tden*dExc/drho +- dExc/dzeta*(1-+zeta)
Ex = ExP + (ExF - ExP)*fzeta
Ec = EcP + (EcF - EcP)*fzeta
Exc = Ex + Ec
= ExP + EcP + (ExF + EcF - ExP - EcP)*fzeta
dEx = dExP + (dExF - dExP)*fzeta
dEc = dEcP + (dEcF - dEcP)*fzeta
dExc = dEx + dEc
= dExP + dEcP + (dExF + dEcF - dExP - dEcP)*fzeta
tden*dExc/drho = -1/3*rs*dExc/drs
*****************************************************/
tmp0 = ExF + EcF - ExP - EcP;
Exc = ExP + EcP + tmp0*fzeta;
dExc = dExP + dEcP + (dExF + dEcF - dExP - dEcP)*fzeta;
Vxc = Exc - 0.33333333333333333333*rs*dExc;
XC[0] = Vxc + tmp0*( 1.0 - zeta)*dfzeta;
XC[1] = Vxc + tmp0*(-1.0 - zeta)*dfzeta;
}
else if (P_switch==2){
/*****************************************************
z0 = (1 + zeta)^{1/3}
z1 = (1 - zeta)^{1/3}
fzeta = (z0^4 + z1^4 - 2)/(2*(2^{1/3}-1))
= 1.92366105093154*(z0^4 + z1^4 - 2)
dfzeta = 2.56488140124205*(z0 - z1)
*****************************************************/
z0 = pow(1.0+zeta,0.33333333333333333);
z1 = pow(1.0-zeta,0.33333333333333333);
z02 = z0*z0;
z04 = z02*z02;
z12 = z1*z1;
z14 = z12*z12;
fzeta = 1.92366105093154*(z04 + z14 - 2.0);
dfzeta = 2.56488140124205*(z0 - z1);
/*****************************************************
Exc - Vxc
*****************************************************/
tmp0 = ExF + EcF - ExP - EcP;
Exc = ExP + EcP + tmp0*fzeta;
dExc = dExP + dEcP + (dExF + dEcF - dExP - dEcP)*fzeta;
Vxc = Exc - 0.33333333333333333333*rs*dExc;
tmp1 = 0.33333333333333333333*rs*dExc;
tmp2 = tmp0*dfzeta;
XC[0] = tmp1 - tmp2*( 1.0 - zeta);
XC[1] = tmp1 - tmp2*(-1.0 - zeta);
}
}
}
|