File: XC_PBE.c

package info (click to toggle)
openmx 3.2.4.dfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: lenny, squeeze
  • size: 62,572 kB
  • ctags: 2,684
  • sloc: ansic: 130,666; python: 876; makefile: 560; xml: 63; perl: 18; sh: 4
file content (190 lines) | stat: -rw-r--r-- 6,037 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/**********************************************************************
  XC_PBE.c:

     XC_PBE.c is a subroutine to calculate the exchange-correlation
     potential developed by Perdew, Burke and Ernzerhof within
     generalized gradient approximation.

     This routine was written by T.Ozaki, based on the original fortran 
     code provided by the SIESTA group through their website. 
     Thanks to them.

     Ref: J.P.Perdew, K.Burke & M.Ernzerhof, PRL 77, 3865 (1996)

  Log of XC_PBE.c:

     22/Nov/2001  Released by T.Ozaki
***********************************************************************/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "openmx_common.h"

#define FOUTHD  4.0/3.0 
#define HALF    0.50
#define THD     1.0/3.0
#define THRHLF  1.50
#define THRHLF  1.50
#define TWO     2.0
#define TWOTHD  2.0/3.0
#define beta    0.0667250
#define gamma   (1.0 - log(TWO))/(PI*PI)
#define mu      beta*PI*PI/3.0
#define kappa   0.8040

void XC_PBE(double dens[2], double GDENS[3][2], double Exc[2],
            double DEXDD[2], double DECDD[2],
            double DEXDGD[3][2], double DECDGD[3][2])
{
  int IS,IX;
  double Ec_unif[1],Vc_unif[2];
  double dt,rs,zeta;
  double den_min,gd_min,phi,t,ks,kF,f1,f2,f3,f4;
  double A,H,Fc,Fx;
  double GDMT,GDT[3];
  double DRSDD,DKFDD,DKSDD,DZDD[2],DPDZ;
  double DECUDD,DPDD,DTDD,DF1DD,DF2DD,DF3DD,DF4DD,DADD;
  double DHDD,DFCDD[2],DTDGD,DF3DGD,DF4DGD,DHDGD,DFCDGD[3][2];
  double DS[2],GDMS,KFS,s,f,DFDD,DFXDD[2],Vx_unif[2],Ex_unif[1];
  double GDS,DSDGD,DSDD,DF1DGD,DFDGD,DFXDGD[3][2];
  double D[2],GD[3][2],GDM[2];

  /****************************************************
         Lower bounds of density and its gradient
              to avoid divisions by zero
  ****************************************************/

  den_min = 1.0e-10;
  gd_min  = 1.0e-10;

  /****************************************************
   Translate density and its gradient to new variables
  ****************************************************/

  dens[0] = largest(0.5*den_min,dens[0]);
  dens[1] = largest(0.5*den_min,dens[1]);

  D[0] = dens[0];
  D[1] = dens[1];
  dt = largest(den_min,dens[0] + dens[1]);

  for (IX=0; IX<=2; IX++){
    GD[IX][0] = GDENS[IX][0];
    GD[IX][1] = GDENS[IX][1];
    GDT[IX] = GDENS[IX][0] + GDENS[IX][1];
  } 
  GDM[0] = sqrt(GD[0][0]*GD[0][0] + GD[1][0]*GD[1][0] + GD[2][0]*GD[2][0]);
  GDM[1] = sqrt(GD[0][1]*GD[0][1] + GD[1][1]*GD[1][1] + GD[2][1]*GD[2][1]);
  GDMT   = sqrt(GDT[0]*GDT[0] + GDT[1]*GDT[1] + GDT[2]*GDT[2]);
  GDMT = largest(gd_min, GDMT);

  /****************************************************
          Local correlation energy and potential 
  ****************************************************/

  XC_PW91C(dens, Ec_unif, Vc_unif);

  /****************************************************
                Total correlation energy
  ****************************************************/

  rs = pow(3.0/(4.0*PI*dt),THD);
  kF = pow(3.0*PI*PI*dt,THD);
  ks = sqrt(4.0*kF/PI);
  zeta = (dens[0] - dens[1])/dt;
  zeta = largest( -1.0 + den_min,zeta);
  zeta = smallest( 1.0 - den_min,zeta);
  phi = 0.50*(pow(1.0 + zeta,TWOTHD)
            + pow(1.0 - zeta,TWOTHD));
  t = GDMT/(2.0*phi*ks*dt);
  f1 = Ec_unif[0]/(gamma*pow(phi,3.0));
  f2 = exp(-f1);
  A = beta/gamma/(f2 - 1.0);
  f3 = t*t + A*t*t*t*t;
  f4 = beta/gamma * f3/(1.0 + A*f3);
  H = gamma*pow(phi,3.0)*log(1.0 + f4);
  Fc = Ec_unif[0] + H;

  /****************************************************
              Correlation energy derivatives
  ****************************************************/

  DRSDD = -(THD*rs/dt);
  DKFDD =   THD*kF/dt;
  DKSDD = HALF*ks*DKFDD/kF;
  DZDD[0] = 1.0/dt - zeta/dt;
  DZDD[1] = -(1.0/dt) - zeta/dt;
  DPDZ = HALF*TWOTHD*(1.0/pow(1.0 + zeta,THD) - 1.0/pow(1.0 - zeta,THD));
  for (IS=0; IS<=1; IS++){
    DECUDD = (Vc_unif[IS] - Ec_unif[0])/dt;
    DPDD = DPDZ*DZDD[IS];
    DTDD = (-t)*(DPDD/phi + DKSDD/ks + 1.0/dt);
    DF1DD = f1*(DECUDD/Ec_unif[0] - 3.0*DPDD/phi);
    DF2DD = (-f2)*DF1DD;
    DADD = (-A)*DF2DD/(f2 - 1.0);
    DF3DD = (2.0*t + 4.0*A*t*t*t) * DTDD + DADD*t*t*t*t;
    DF4DD = f4*(DF3DD/f3 - (DADD*f3+A*DF3DD)/(1.0 + A*f3));
    DHDD = 3.0*H*DPDD/phi;
    DHDD = DHDD + gamma*phi*phi*phi*DF4DD/(1.0 + f4);
    DFCDD[IS] = Vc_unif[IS] + H + dt * DHDD;

    for (IX=0; IX<=2; IX++){
      DTDGD = (t/GDMT)*GDT[IX]/GDMT;
      DF3DGD = DTDGD*(2.0*t + 4.0*A*t*t*t);
      DF4DGD = f4*DF3DGD*(1.0/f3 - A/(1.0 + A*f3));
      DHDGD = gamma*phi*phi*phi*DF4DGD/(1.0 + f4);
      DFCDGD[IX][IS] = dt*DHDGD;
    }
  }

  /****************************************************
              Exchange energy and potential
  ****************************************************/

  Fx = 0.0;
  for (IS=0; IS<=1; IS++){
    DS[IS] = largest(den_min, 2.0*D[IS]);
    GDMS = largest(gd_min, 2.0*GDM[IS]);
    KFS = pow(3.0*PI*PI*DS[IS],THD);
    s = GDMS/(2.0*KFS*DS[IS]);
    f1 = 1.0 + mu*s*s/kappa;
    f = 1.0 + kappa - kappa/f1;

    /****************************************************
                Note nspin=1 in call to XC_EX
    ****************************************************/

    XC_EX(1, DS[IS], DS, Ex_unif, Vx_unif);

    Fx = Fx + DS[IS]*Ex_unif[0]*f;
    DKFDD = THD * KFS/DS[IS];
    DSDD = s*(-(DKFDD/KFS) - 1.0/DS[IS]);
    DF1DD = 2.0*(f1 - 1.0)*DSDD/s;
    DFDD = kappa*DF1DD/(f1*f1);
    DFXDD[IS] = Vx_unif[0]*f + DS[IS]*Ex_unif[0]*DFDD;
    for (IX=0; IX<=2; IX++){
      GDS = 2.0*GD[IX][IS];
      DSDGD = (s/GDMS)*GDS/GDMS;
      DF1DGD = 2.0*mu*s*DSDGD/kappa;
      DFDGD = kappa*DF1DGD/(f1*f1);
      DFXDGD[IX][IS] = DS[IS]*Ex_unif[0]*DFDGD;
    }
  }
  Fx = HALF*Fx/dt;

  /****************************************************
                   Set output arguments
  ****************************************************/

  Exc[0] = Fx;
  Exc[1] = Fc;
  for (IS=0; IS<=1; IS++){
    DEXDD[IS] = DFXDD[IS];
    DECDD[IS] = DFCDD[IS];
    for (IX=0; IX<=2; IX++){
      DEXDGD[IX][IS] = DFXDGD[IX][IS];
      DECDGD[IX][IS] = DFCDGD[IX][IS];
    } 
  }
}