1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/**********************************************************************
XC_PBE.c:
XC_PBE.c is a subroutine to calculate the exchange-correlation
potential developed by Perdew, Burke and Ernzerhof within
generalized gradient approximation.
This routine was written by T.Ozaki, based on the original fortran
code provided by the SIESTA group through their website.
Thanks to them.
Ref: J.P.Perdew, K.Burke & M.Ernzerhof, PRL 77, 3865 (1996)
Log of XC_PBE.c:
22/Nov/2001 Released by T.Ozaki
***********************************************************************/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "openmx_common.h"
#define FOUTHD 4.0/3.0
#define HALF 0.50
#define THD 1.0/3.0
#define THRHLF 1.50
#define THRHLF 1.50
#define TWO 2.0
#define TWOTHD 2.0/3.0
#define beta 0.0667250
#define gamma (1.0 - log(TWO))/(PI*PI)
#define mu beta*PI*PI/3.0
#define kappa 0.8040
void XC_PBE(double dens[2], double GDENS[3][2], double Exc[2],
double DEXDD[2], double DECDD[2],
double DEXDGD[3][2], double DECDGD[3][2])
{
int IS,IX;
double Ec_unif[1],Vc_unif[2];
double dt,rs,zeta;
double den_min,gd_min,phi,t,ks,kF,f1,f2,f3,f4;
double A,H,Fc,Fx;
double GDMT,GDT[3];
double DRSDD,DKFDD,DKSDD,DZDD[2],DPDZ;
double DECUDD,DPDD,DTDD,DF1DD,DF2DD,DF3DD,DF4DD,DADD;
double DHDD,DFCDD[2],DTDGD,DF3DGD,DF4DGD,DHDGD,DFCDGD[3][2];
double DS[2],GDMS,KFS,s,f,DFDD,DFXDD[2],Vx_unif[2],Ex_unif[1];
double GDS,DSDGD,DSDD,DF1DGD,DFDGD,DFXDGD[3][2];
double D[2],GD[3][2],GDM[2];
/****************************************************
Lower bounds of density and its gradient
to avoid divisions by zero
****************************************************/
den_min = 1.0e-10;
gd_min = 1.0e-10;
/****************************************************
Translate density and its gradient to new variables
****************************************************/
dens[0] = largest(0.5*den_min,dens[0]);
dens[1] = largest(0.5*den_min,dens[1]);
D[0] = dens[0];
D[1] = dens[1];
dt = largest(den_min,dens[0] + dens[1]);
for (IX=0; IX<=2; IX++){
GD[IX][0] = GDENS[IX][0];
GD[IX][1] = GDENS[IX][1];
GDT[IX] = GDENS[IX][0] + GDENS[IX][1];
}
GDM[0] = sqrt(GD[0][0]*GD[0][0] + GD[1][0]*GD[1][0] + GD[2][0]*GD[2][0]);
GDM[1] = sqrt(GD[0][1]*GD[0][1] + GD[1][1]*GD[1][1] + GD[2][1]*GD[2][1]);
GDMT = sqrt(GDT[0]*GDT[0] + GDT[1]*GDT[1] + GDT[2]*GDT[2]);
GDMT = largest(gd_min, GDMT);
/****************************************************
Local correlation energy and potential
****************************************************/
XC_PW91C(dens, Ec_unif, Vc_unif);
/****************************************************
Total correlation energy
****************************************************/
rs = pow(3.0/(4.0*PI*dt),THD);
kF = pow(3.0*PI*PI*dt,THD);
ks = sqrt(4.0*kF/PI);
zeta = (dens[0] - dens[1])/dt;
zeta = largest( -1.0 + den_min,zeta);
zeta = smallest( 1.0 - den_min,zeta);
phi = 0.50*(pow(1.0 + zeta,TWOTHD)
+ pow(1.0 - zeta,TWOTHD));
t = GDMT/(2.0*phi*ks*dt);
f1 = Ec_unif[0]/(gamma*pow(phi,3.0));
f2 = exp(-f1);
A = beta/gamma/(f2 - 1.0);
f3 = t*t + A*t*t*t*t;
f4 = beta/gamma * f3/(1.0 + A*f3);
H = gamma*pow(phi,3.0)*log(1.0 + f4);
Fc = Ec_unif[0] + H;
/****************************************************
Correlation energy derivatives
****************************************************/
DRSDD = -(THD*rs/dt);
DKFDD = THD*kF/dt;
DKSDD = HALF*ks*DKFDD/kF;
DZDD[0] = 1.0/dt - zeta/dt;
DZDD[1] = -(1.0/dt) - zeta/dt;
DPDZ = HALF*TWOTHD*(1.0/pow(1.0 + zeta,THD) - 1.0/pow(1.0 - zeta,THD));
for (IS=0; IS<=1; IS++){
DECUDD = (Vc_unif[IS] - Ec_unif[0])/dt;
DPDD = DPDZ*DZDD[IS];
DTDD = (-t)*(DPDD/phi + DKSDD/ks + 1.0/dt);
DF1DD = f1*(DECUDD/Ec_unif[0] - 3.0*DPDD/phi);
DF2DD = (-f2)*DF1DD;
DADD = (-A)*DF2DD/(f2 - 1.0);
DF3DD = (2.0*t + 4.0*A*t*t*t) * DTDD + DADD*t*t*t*t;
DF4DD = f4*(DF3DD/f3 - (DADD*f3+A*DF3DD)/(1.0 + A*f3));
DHDD = 3.0*H*DPDD/phi;
DHDD = DHDD + gamma*phi*phi*phi*DF4DD/(1.0 + f4);
DFCDD[IS] = Vc_unif[IS] + H + dt * DHDD;
for (IX=0; IX<=2; IX++){
DTDGD = (t/GDMT)*GDT[IX]/GDMT;
DF3DGD = DTDGD*(2.0*t + 4.0*A*t*t*t);
DF4DGD = f4*DF3DGD*(1.0/f3 - A/(1.0 + A*f3));
DHDGD = gamma*phi*phi*phi*DF4DGD/(1.0 + f4);
DFCDGD[IX][IS] = dt*DHDGD;
}
}
/****************************************************
Exchange energy and potential
****************************************************/
Fx = 0.0;
for (IS=0; IS<=1; IS++){
DS[IS] = largest(den_min, 2.0*D[IS]);
GDMS = largest(gd_min, 2.0*GDM[IS]);
KFS = pow(3.0*PI*PI*DS[IS],THD);
s = GDMS/(2.0*KFS*DS[IS]);
f1 = 1.0 + mu*s*s/kappa;
f = 1.0 + kappa - kappa/f1;
/****************************************************
Note nspin=1 in call to XC_EX
****************************************************/
XC_EX(1, DS[IS], DS, Ex_unif, Vx_unif);
Fx = Fx + DS[IS]*Ex_unif[0]*f;
DKFDD = THD * KFS/DS[IS];
DSDD = s*(-(DKFDD/KFS) - 1.0/DS[IS]);
DF1DD = 2.0*(f1 - 1.0)*DSDD/s;
DFDD = kappa*DF1DD/(f1*f1);
DFXDD[IS] = Vx_unif[0]*f + DS[IS]*Ex_unif[0]*DFDD;
for (IX=0; IX<=2; IX++){
GDS = 2.0*GD[IX][IS];
DSDGD = (s/GDMS)*GDS/GDMS;
DF1DGD = 2.0*mu*s*DSDGD/kappa;
DFDGD = kappa*DF1DGD/(f1*f1);
DFXDGD[IX][IS] = DS[IS]*Ex_unif[0]*DFDGD;
}
}
Fx = HALF*Fx/dt;
/****************************************************
Set output arguments
****************************************************/
Exc[0] = Fx;
Exc[1] = Fc;
for (IS=0; IS<=1; IS++){
DEXDD[IS] = DFXDD[IS];
DECDD[IS] = DFCDD[IS];
for (IX=0; IX<=2; IX++){
DEXDGD[IX][IS] = DFXDGD[IX][IS];
DECDGD[IX][IS] = DFCDGD[IX][IS];
}
}
}
|